Publications by authors named "Kaji H"

The clinical significance of sarcopenia and osteoporosis has increased with the increase in the population of older people. Sarcopenia is defined by decreased muscle mass and impaired muscle function, which is related to osteoporosis independently and dependently. Numerous lines of clinical evidence suggest that lean body mass is positively related to bone mass, which leads to reduced fracture risk.

View Article and Find Full Text PDF

We constructed brain-derived neurotrophic factor (BDNF) expressing rat retinal pigment epithelial (RPE) cells by stable transfection of BDNF cDNA, and the RPE cells were cultured on a cross-linked collagen sheet (Coll-RPE-BDNF). BDNF expression of the Coll-RPE-BDNF was confirmed by western blot, and the Coll-RPE-BDNF was transplanted into the rabbit sclera. In vivo BDNF expression was confirmed by His expression that was linked to the expressing BDNF.

View Article and Find Full Text PDF

Immunoglobulin A nephropathy (IgAN) is a form of chronic glomerulonephritis characterized by the deposition of IgA immune complexes in the glomerular region. The cause of IgAN is unknown, but multiple mechanisms have been suggested. We previously reported a rare case of mesangioproliferative glomerulonephritis in a patient with monoclonal immunoglobulin deposition disease associated with monoclonal IgA1.

View Article and Find Full Text PDF

Previous studies suggest that fracture healing is impaired in diabetes; however, the underlying mechanism remains unclear. Here, we investigated the roles of plasminogen activator inhibitor-1 (PAI-1) in the impaired bone repair process by using streptozotocin (STZ)-induced diabetic female wild-type (PAI-1+/+) and PAI-1-deficient (PAI-1-/-) mice. Bone repair and the number of alkaline phosphatase (ALP)-positive cells at the site of a femoral bone damage were comparable in PAI-1+/+ and PAI-1-/- mice without STZ treatment.

View Article and Find Full Text PDF

We previously demonstrated that plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, is involved in type 1 diabetic bone loss in female mice. PAI-1 is well known as an adipogenic factor induced by obesity. We therefore examined the effects of PAI-1 deficiency on bone and glucose and lipid metabolism in high-fat and high-sucrose diet (HF/HSD)-induced obese female mice.

View Article and Find Full Text PDF

Two types of hydrogel-based bioassay sheets were developed for in vitro evaluation of contraction-dependent metabolic regulation in skeletal muscle cells: one is an oxygen sensor sheet and the other is an immunocapture sheet for a myokine, interleukin-6 (IL-6). These soft, molecularly permeable hydrogel-based bioassay sheets were directly laminated to another hydrogel on which myotubes were micropatterned, and displayed usefully measurable changes in local oxygen consumption and IL-6 secretion of myotubes upon electrically-induced contraction.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is often asymptomatic and thus diagnosed at advanced stages with a poor prognosis. False-negative results for the conventional marker CA125 frequently occur in cases of clear cell carcinoma (CCC), a type of EOC; therefore, it is necessary to develop biomarkers with greater sensitivity. We previously reported a strategy to discover glycobiomarker candidates by combined lectin microarray and IGOT-LC/MS analysis.

View Article and Find Full Text PDF

We show the fibrous protein fibrin can serve as biocompatible glue with which to bind synthetic cationic or anionic hydrogels together. Both the bonding to and detachment from the hydrogels by fibrin (gelation and degradation, respectively) proceeded enzymatically under physiological conditions. We built a hydrogel-based actuator to demonstrate the method.

View Article and Find Full Text PDF

The importance of diagnosis and therapies for liver cirrhosis (LC) is indisputable. Thus, a reliable method for monitoring the progression of liver fibrosis and resultant LC is urgently needed. Previously, using a lectin-assisted glycoproteomic method, we identified 26 serum glycoproteins as promising glycobiomarker candidates for monitoring the progression of liver diseases.

View Article and Find Full Text PDF

Neutrophils play a crucial role in host defence. In response to a variety of inflammatory stimulation, they form neutrophil extracellular traps (NETs). NETs are extracellular structures composed of chromatin fibers decorated with antimicrobial proteins and developing studies indicate that NETs contribute to extracellular microbial killing.

View Article and Find Full Text PDF

Type 1 diabetes is associated with an increased fracture risk, an impaired fracture healing, and an increased vitamin D insufficiency. However, the role of vitamin D in diabetic bone repair process remains unclear. We therefore examined the effects of vitamin D deficiency on the impaired bone repair in streptozotocin (STZ)-induced diabetes using female mice.

View Article and Find Full Text PDF

The osteoinductive factors BMP-2 and Tmem119 that promote the differentiation of myoblasts into osteoblasts, each increase the levels of the other. However, the relative contributions of BMP-2 and Tmem119 to the osteogenic differentiation and the mechanisms involved are incompletely understood. In the present study, we examined the relationship among BMP-2, Tmem119, and the PERK-eIF2α-ATF4 endoplasmic reticulum (ER) stress response pathway in the differentiation of C2C12 myoblasts into osteoblastic cells.

View Article and Find Full Text PDF

Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation.

View Article and Find Full Text PDF

Objectives: Glucocorticoid (GC) is usually used for the treatment of systemic inflammatory diseases. We performed the prospective study to clarify the effects of alendronate or alfacalcidol on bone metabolic indices and bone mineral density (BMD) in 90 patients treated with GC for ophthalmologic diseases without systemic disorders for 12 months.

Methods: BMD was measured with dual-energy X-ray absorptiometry.

View Article and Find Full Text PDF

Like a carpet for cells, micropatterned polymeric nanosheets are developed toward local cell delivery. The nanosheets direct morphogenesis of retinal pigment epithelial (RPE) cells and allow for the injection of an engineered RPE monolayer through syringe needles without the loss of cell viability. Such an ultrathin carrier has the promise of a minimally invasive delivery of cells into narrow tissue spaces.

View Article and Find Full Text PDF

Planarized triphenylboranes extended with thiophene or bithiophene spacers were synthesized, which showed intense fluorescences in solution and reversible redox waves for reduction in cyclic voltammetry. Organic light-emitting diodes (OLEDs) using these compounds as an electron-transporting material were fabricated.

View Article and Find Full Text PDF

The design of drug delivery systems that can deliver multiple drugs to the posterior segment of the eye is a challenging task in retinal disease treatments. We report a polymeric device for multi-drug transscleral delivery at independently controlled release rates. The device comprises a microfabricated reservoir, controlled-release cover and three different fluorescent formulations, which were made of photopolymeized tri(ethyleneglycol)dimethacrylate (TEGDM) and poly(ethyleneglycol)dimethacrylate (PEGDM).

View Article and Find Full Text PDF

Previous studies have suggested some interactions between muscle tissues and bone metabolism. The constitutively activating mutation (R206H) of the BMP type I receptor, activin-like-kinase 2 (ALK2), causes fibrodysplasia ossificans progressiva (FOP), which is characterized by extensive ossifications within muscle tissues. In the present study, we revealed that Tmem176b mRNA levels were upregulated by stable transfection of ALK2 (R206H) in mouse myoblastic C2C12 cells.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a skeletal disorder with progressive heterotopic ossification in skeletal muscle. A mutation causing constitutive activation in a bone morphogenetic protein (BMP) type 1 receptor [ALK2(R206H)] is found in most patients with FOP. However, the details in the heterotopic ossification of muscle in FOP and the role of matrix metalloproteinase-10 (MMP-10) in bone remain to be fully elucidated.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown.

View Article and Find Full Text PDF

The vibronic coupling constants and reorganization energies of oligofluorenes OF(n) (n = 1-6) are calculated for their cationic states (hole transport). Those of oligothiophenes OT(2n) (n = 1-6) are also calculated for comparison. The vibronic coupling constants of OF(n) are smaller than those of OT(2n), and decrease with increasing n.

View Article and Find Full Text PDF

A new method of producing carbon-centered radicals was discovered through the reaction of an alkyl iodide (R-I) with organic salts to reversibly generate the corresponding alkyl radical (R(•)). Via this new reaction, the organic salts were used as new and highly efficient organic catalysts in living radical polymerization. The catalysts included common and inexpensive compounds such as tetrabutylammonium iodide and methyltributylphosphonium iodide.

View Article and Find Full Text PDF

There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-β) is one of the main epithelial-mesenchymal transition (EMT)-inducing factors. In general, TGF-β-induced EMT promotes cell migration and invasion. TGF-β also acts as a potent regulator of pericellular proteolysis by regulating the expression and secretion of plasminogen activators.

View Article and Find Full Text PDF