It is possible to detect damage in structures based only on vision-system-based assessment of their deformation shape under load. There is, however, a gap between available methods designed to detect damage in beam-like structures and engineering needs for monitoring structures of many different shapes. In this article, a new Aligned Marker Space method of morphing vision data is introduced.
View Article and Find Full Text PDFShort-time, abrupt events-such as earthquakes and other shock loadings-often lead to damage that is difficult to detect in structures using output-only vibration measurements. The time-variant transmissibility is proposed to tackle this problem. The approach is based on two-dimensional wavelet power spectra.
View Article and Find Full Text PDFMuch information can be derived from operational deflection shapes of vibrating structures and the magnification of their motion. However, the acquisition of deflection shapes usually requires a manual definition of an object's points of interest, while general motion magnification is computationally inefficient. We propose easy extraction of operational deflection shapes straight from vision data by analyzing and processing optical flow information from the video and then, based on these graphs, morphing source data to magnify the shape of deflection.
View Article and Find Full Text PDFIn the last few decades, there has been a significant increase in interest in developing, constructing, and using structural health monitoring (SHM) systems. The classic monitoring system should, by definition, have, in addition to the diagnostic module, a module responsible for monitoring loads. These loads can be measured with piezoelectric force sensors or indirectly with strain gauges such as resistance strain gauges or FBG sensors.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2018
Wavelet analysis is applied to identify the time-variant dynamics of adaptive structures. The wavelet-based power spectrum of the structural response, wavelet-based frequency response function (FRF) and wavelet-based coherence are used to identify continuously and abruptly varying natural frequencies. A cantilever plate with surface-bonded macro fibre composite-which alters the structural stiffness-is used to demonstrate the application of the methods.
View Article and Find Full Text PDF