Publications by authors named "Kajal K Mallick"

The adaptive foam reticulation technique combines the foam reticulation and freeze casting methodologies of fabricating bone reparative scaffolds to offer a potential alternative to autografts. For the first time this paper studies the effect of processing on the mechanical properties and in-vitro cell growth of controllably generating a hierarchical structure of macro- (94 ± 6 to 514 ± 36 μm) and microporosity (2-30 μm) by the inclusion of camphene as a porogen during processing. Scaffolds were produced with porogen additions of 0-25 wt%.

View Article and Find Full Text PDF

A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing.

View Article and Find Full Text PDF

Hydroxyapatite (HA) substituted with 2 mol% Sr, 10 mol% Mg, and 2 mol% Zn were precipitated under identical alkaline conditions (pH 11) at 20°C from an aqueous solution. As-synthesised materials were confirmed to be phase pure by XRD and samples prepared in air contained surface adsorbed CO2 as observed by FTIR. SEM studies revealed a globular morphology and agglomeration behaviour, typical of precipitated nHA.

View Article and Find Full Text PDF

The use of tissue engineered biodegradable porous scaffolds has become an important focus of the biomedical research field. The precursor materials used to form these structures play a vital role in their overall performance thus making the study and synthesis of these selected materials imperative. The authors present a comparison and characterisation of hydroxyapatite (HA), a popular calcium phosphate (CaP) biomaterial, synthesised by an aqueous precipitation (AP) method.

View Article and Find Full Text PDF

Reconstruction and regeneration of new tissues are challenges facing scientists, technologists and clinicians. This review describes strategies of selection and design of biomaterials having significant impact on various possible synthesis routes for scaffold fabrication. The criteria for three-dimensional (3D) scaffold architectures are explored in tandem with biomaterial properties such as porosity, interconnectivity and mechanical integrity.

View Article and Find Full Text PDF

Highly interconnected and 3D porous bioactive hydroxyapatite (HAP) and Bioglass scaffolds have been fabricated by an adaptive version of camphene based foam reticulation (ARM) and camphene freeze casting (CFC) methods. Controlled sublimation of camphene during freeze casting at -78°C produced process optimized bioscaffolds with open, uniform, and interconnected porous structures. HAP and Bioglass scaffolds with desired porosity, pore size, and microtopography were successfully fabricated using polyurethane foam templates of appropriate structures.

View Article and Find Full Text PDF