Bone tissue engineering aims to address bone-related problems that arise from trauma, infection, tumors, and surgery. Polymer and calcium silicate bioactive material (BM) based composites are commonly preferred as potential materials for bone treatment. However, the polymer has low bioactivity, thus, the current work aims to prepare a composite scaffold based on BM-sodium alginate (Alg) by varying the Alg percentage to optimize the porous nature of the composite.
View Article and Find Full Text PDFRoad accidents and infection-causing diseases during bone surgery are serious problems in orthopedics, and thus, addressing these pressing challenges is crucial. In the present study, the 70S30C calcium silicate bioactive material (BM) is synthesized by a sustainable approach employing a precipitation method using recycled rice husk and eggshells as a precursor of silica and calcium. Further, 70S30C BM is composited with sodium alginate (SA) and polyvinyl alcohol (PVA), and the films were prepared by solvent casting method.
View Article and Find Full Text PDF