Control of biological function by the use of photoremovable protecting groups (PPGs) is a gateway towards many new medical developments. Herein, we report the synthesis and application of efficient and biocompatible BODIPY-based photoprotecting groups for amines, which are cleavable with red light in the phototherapeutic window region (λ > 650 nm). We use the most promising PPG for the protection of dopamine and apply it to control the beating frequency of human cardiomyocytes.
View Article and Find Full Text PDFHerein, we describe the synthesis of a fluorescent probe and its use for the detection of peroxyl radicals. This probe is composed of two receptor segments (4-hydroxycinnamyl moieties) sensitive towards peroxyl radicals that are conjugated with a fluorescent reporter, dipyrrometheneboron difluoride (BODIPY), whose emission changes depend on the oxidation state of the receptors. The measurement of the rate of peroxidation of methyl linoleate in a micellar system in the presence of 1.
View Article and Find Full Text PDFWe describe a series of easily accessible, visible-light-sensitive (λ > 500 nm) BODIPY (boron-dipyrromethene)-based photoprotecting groups (PPGs) for primary and secondary amines, based on a carbamate linker. The caged compounds are stable under aqueous conditions for 24 h and can be efficiently uncaged in vitro with visible light (λ = 530 nm). These properties allow efficient photodeprotection of amines, rendering these novel PPGs potentially suitable for various applications, including the delivery of caged drugs and their remote activation.
View Article and Find Full Text PDFThe properties of liquid-crystalline (LC) hybrid systems made of inorganic nanoparticles grafted with photosensitive azo compounds are presented. For materials with a large density of azo ligands at the surface, the LC structure can be reversibly melted by UV light, and the return to the LC state does not require the absorption of visible light. For systems with a lower density of azo ligands, UV light causes shortening of the distance between metal sublayers in the lamellar phase.
View Article and Find Full Text PDF