Astrobiology missions to ocean worlds in our solar system must overcome both scientific and technological challenges due to extreme temperature and radiation conditions, long communication times, and limited bandwidth. While such tools could not replace ground-based analysis by science and engineering teams, machine learning algorithms could enhance the science return of these missions through development of autonomous science capabilities. Examples of science autonomy include onboard data analysis and subsequent instrument optimization, data prioritization (for transmission), and real-time decision-making based on data analysis.
View Article and Find Full Text PDF