Two new chromones, oleracone H () and oleracone I (), were isolated from L. and identified by UV, IR, UHPLC-ESI-QTOF/MS, 1D NMR, 2D NMR, and CD spectra. In 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical quenching assay, oleracone H () and oleracone I () presented scavenging activities with IC values (half maximal inhibitory concentration) of 16.
View Article and Find Full Text PDFCytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum).
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper.
View Article and Find Full Text PDFFusarium wilt (FW) is widespread in global cotton production, but the mechanism underlying FW resistance in superior-fiber-quality Sea Island cotton is unclear. This study reveals that FW resistance has been the target of genetic improvement of Sea Island cotton in China since the 2010s. The key nonsynonymous single nucleotide polymorphism (SNP, T/C) of gene Gbar_D03G001670 encoding protein phosphatase 2C 80 (PP2C80) results in an amino acid shift (L/S), which is significantly associated with FW resistance of Sea Island cotton.
View Article and Find Full Text PDFBackground: The utilization of heterosis based on three-line system is an effective strategy in crop breeding. However, cloning and mechanism elucidation of restorer genes for cytoplasmic male sterility (CMS) in upland cotton have yet been realized.
Results: This research is based on CMS line 2074A with the cytoplasm from Gossypium harknessii (D) and restorer line R186.
Sea Island cotton () is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield.
View Article and Find Full Text PDFSea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2010
Using ab initio calculations, we have evaluated two structural descriptions of γ-Al(2)O(3), spinel and tetragonal hausmannite, and explored the relative stability of γ-Al(2)O(3) with respect to α-Al(2)O(3) with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the γ to α transition.
View Article and Find Full Text PDF