Excessive histamine in spoiled seafood poses considerable health hazards to consumers, yet its detection is challenging due to complicated sample preparation and detection methodologies. Herein, an integrated colorimetric platform containing Poly (vinyl alcohol) (PVA)/hyaluronic acid (HA) microneedle patches-assisted extraction and aptasensor-based detection was reported. The developed PVA/HA microneedle patches facilitated on-site histamine extraction from seafood through a two-minute press-and-peel procedure.
View Article and Find Full Text PDFFood synthetic biology is garnering increasing attention for its potential to generate bioactive components. His-tag is one of the most popular tags used in food synthetic biology. Herein, His-tag, His-tagged proteins, and His-tagged peptides were adopted as the model targets, and a commonly used biosensor was developed to monitor His-tagged food biomolecules, using split aptamers as specific recognition probes and nanozyme as the transduction element.
View Article and Find Full Text PDFAdvanced analytical techniques are emerging in the food industry. Aptamer-based biosensors achieve rapid and highly selective analysis, thus drawing particular attention. Aptamers are oligonucleotide probes screened via in vitro Systematic Evolution of Ligands by EXponential Enrichment (SELEX), which can bind with their specific targets by folding into three-dimensional configurations and accept various modifications to be incorporated into biosensors, showing great potential in food analysis.
View Article and Find Full Text PDFDeveloping simultaneous detection methods for multiple targets is crucial for the field of food analysis. Herein, enrofloxacin (ENR) and ciprofloxacin (CIP) were taken as model targets. For the first time, a strategy to generate group-specific split aptamers was established by revealing and splitting the critical binding domain, and the split aptamers were exploited to design a four-way DNA junction (4WJ) which could regulate the enzymatic activity of chitosan oligosaccharide (COS)-AuNPs nanozyme to develop a colorimetric aptasensor.
View Article and Find Full Text PDF