Introduction: Crop rotation of tobacco with other crops could effectively break the negative impact of continuous tobacco cropping, but the mechanisms of intercropping system effects on tobacco, especially on the rhizosphere, are not clear.
Methods: In this study, we investigated the impact of intercropping system on the diversity and function of tobacco metabolites and microorganisms through metabolomic and metagenomic analyses of the tobacco rhizosphere microenvironment intercropped with maize and soybean.
Results: The results showed that the contents of huperzine b, chlorobenzene, and P-chlorophenylalanine in tobacco rhizosphere soils differed significantly among soybean-tobacco and maize-tobacco intercropping system.
Introduction: Currently, research on tobacco's response to chilling stress is mostly limited to laboratory simulations, where temperature is controlled to study physiological and molecular responses. However, laboratory conditions cannot fully replicate the complex environment of field chilling stress, so conducting research under field conditions is crucial for understanding the multi-level adaptive mechanisms of tobacco to chilling stress in natural environments.
Methods: This study aims to use field trials, starting from physiological responses, combined with proteomics and untargeted metabolomics, to systematically reveal the physiological and biochemical characteristics and key molecular mechanisms of tobacco leaves under chilling stress.
With the intensification of global climate change, high-temperature and drought stress have emerged as critical environmental stressors affecting tobacco plants' growth, development, and yield. This study provides a comprehensive review of tobacco's physiological and biochemical responses to optimal temperature conditions and limited irrigation across various growth stages. It assesses the effects of these conditions on yield and quality, along with the synergistic interactions and molecular mechanisms associated with these stressors.
View Article and Find Full Text PDFContinuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities.
View Article and Find Full Text PDFTobacco ( L.) is a major cash crop, and soil quality played a significant role in the yield and quality of tobacco. Most farmers cultivate tobacco in rotation with other crops to improve the soil characteristics.
View Article and Find Full Text PDFThe use of silicon fertilizer (SF) as a means of remediating cadmium (Cd) and lead (Pb) pollution has proven to be beneficial. However, the mechanism via which SF enhances soil quality and crop productivity under Cd- and Pb-contaminated soil (S) remains unclear. This study investigated the impacts of chemical fertilizer, mineral SF (MSF), and organic SF (OSF) on microbial community structure, activity of nutrient acquisition enzymes, and growth of tobacco in the presence of S condition.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2024
Soil nitrogen content, structure, and nitrogen cycling play a crucial role in tobacco growth quality, with different preceding crops having varying impacts on tobacco cultivation soil. This study conducted using field experiments, employed three treatments with different preceding crops, namely tobacco, barley, and rapeseed, to investigate the effects of different preceding crops on soil nitrogen structure and the expression levels of soil nitrogen cycling-related functional genes in tobacco cultivation soil. The results indicated that different preceding crops had varying effects on the content of different nitrogen forms in tobacco cultivation soil.
View Article and Find Full Text PDFIntroduction: Until now, the mechanism underlying the impact of topping on hormone regulation in tobacco plants remains unclear, and most studies investigating the hormone signaling pathways in plants rely on genes or transcriptional pathways.
Methods: This study examines the regulatory mechanisms of hormones in the roots and leaves of tobacco plants with and without topping at the protein level.
Results: The results demonstrate that, compared with non-topped plants, topping leads to a decrease in the levels of IAA (auxin), ABA (abscisic acid), and GA (gibberellin) hormones in the leaves, whereas the content of the JA (jasmonic acid) hormone increases.
Tobacco is be sensitively affected by chilling injury in the vigorous growth period, which can easily lead to tobacco leaf browning during flue-curing and quality loss, however, the physiological response of tobacco in the prosperous period under low temperature stress is unclear. The physiological response parameters of two tobacco varieties to low temperature stress were determined. The main results were as follows: ① For tobacco in the vigorous growing period subjected to low-temperature stress at 4-16 °C, the tissue structure of chloroplast changed and photosynthetic pigments significantly decreased compared with each control with the increase of intensity of low-temperature stress.
View Article and Find Full Text PDFThe purpose of the study is to explore the effect of flue-curing procedure on the diversity of microbial communities in tobaccos and the dynamic change of compositions of microbial communities in the flue-curing process. It expects to provide a theoretical basis for the application of microbes in tobacco leaves and a theoretical basis and idea for optimization of the flue-curing technologies. By investigating tobacco variety K326, the tests were carried out for comparing the conventional flue-curing procedure and dry-ball temperature set and wet-ball temperature degradation flue-curing procedure.
View Article and Find Full Text PDFBackground: Weather change in high-altitude areas subjects mature tobacco (Nicotiana tabacum L.) to cold stress, which damages tobacco leaf yield and quality. A brupt diurnal temperature differences (the daily temperature dropping more than 20 °C) along with rainfall in tobacco-growing areas at an altitude above 2450 m, caused cold stress to field-grown tobacco.
View Article and Find Full Text PDFRecent emergence of two-dimensional (2D) crystalline superconductors has provided a promising platform to investigate novel quantum physics and potential applications. To reveal essential quantum phenomena therein, ultralow temperature transport investigation on high-quality ultrathin superconducting films is critically required, although it has been quite challenging experimentally. Here, we report a systematic transport study on the ultrathin crystalline PdTe films grown by molecular beam epitaxy (MBE).
View Article and Find Full Text PDFTaking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions.
View Article and Find Full Text PDF