Publications by authors named "Kaiyin Yang"

Isocitrate dehydrogenases 1 (IDH1) catalyzes the oxidative decarboxylation of isocitrate to ɑ-ketoglutaric acid (α-KG). It is the most frequently mutated metabolic gene in human cancer and its mutations interfere with cell metabolism and epigenetic regulation, thus promoting tumorigenesis. In order to discover potent new mutant IDH1 inhibitors, based on the structure of marketed inhibitor AG-120 (Ivosidenib), we designed, synthesized and evaluated a series of linear unnatural peptide analogues via Ugi reaction, as potential mutant IDH1 inhibitors.

View Article and Find Full Text PDF

Protein tyrosine phosphatase SHP2 is a member of PTPs family associated with cancer such as leukemia, non-small cell lung cancer, breast cancer, and so on. SHP2 is a promising target for drug development, and consequently it is of great significance to develop SHP2 inhibitors. Herein, we report CRBN-recruiting PROTAC molecules targeting SHP2 by connecting pomalidomide with SHP099, an allosteric inhibitor of SHP2.

View Article and Find Full Text PDF

Accelerated glucose metabolism is a common feature of cancer cells. Hexokinase 2 (HK2) as the rate-limiting enzyme catalyzes the first step of glucose metabolism. It is overexpressed in most of the human cancers and has been a promising target for cancer therapy.

View Article and Find Full Text PDF

COVID-19 broke out in the end of December 2019 and is still spreading rapidly, which has been listed as an international concerning public health emergency. We found that the Spike protein of SARS-CoV-2 contains a furin cleavage site, which did not exist in any other betacoronavirus subtype B. Based on a series of analysis, we speculate that the presence of a redundant furin cut site in its Spike protein is responsible for SARS-CoV-2's stronger infectious nature than other coronaviruses, which leads to higher membrane fusion efficiency.

View Article and Find Full Text PDF

Hexokinase 2 (HK2) is over-expressed in most of human cancers and has been proved to be a promising target for cancer therapy. In this study, based on the structure of HK2, we screened over 6 millions of compounds to obtain the lead. A total of 26 (E)-N'-(2,3,4-trihydroxybenzylidene) arylhydrazide derivatives were then designed, synthesized, and evaluated for their HK2 enzyme activity and IC values against two cancer cell lines.

View Article and Find Full Text PDF

Glutamic-oxaloacetic transaminase 1 (GOT1) regulates cellular metabolism through coordinating the utilization of carbohydrates and amino acids to meet nutrient requirements for sustained proliferation. As such, the GOT1 inhibitor may provide a new strategy for the treatment of various cancers. Adapalene has been approved by FDA for the treatment of acne, pimples and pustules, and it may also contribute to the adjunctive therapy for advanced stages of liver and colorectal cancers.

View Article and Find Full Text PDF

Kidney-type glutaminase (KGA), catalyzing the hydrolysis of glutamine to glutamate for energy supply, is over-expressed in many cancers and has been regarded as a new therapeutic target for cancers. Physapubescin I was isolated from the fruits of the edible herb Physalis pubescens L., commonly named as "husk tomato or hairy groundcherry", and was predicted to be a potential KGA inhibitor through structure-based virtual ligand screening.

View Article and Find Full Text PDF

3-Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first rate-limiting step for the synthesis of glucose-derived serine by converting 3-phosphoglycerate (3-PG) to phosphohydroxypyruvate (p-Pyr), which has been reported to associate with tumorigenesis in many cancers. Iox A, a natural withanolide obtained from dietary tomatillo (Physalis ixocarpa), showed significant PHGDH inhibitory activity with an IC50 value of 1.66 ± 0.

View Article and Find Full Text PDF

Two series of andrographolide derivatives with introduction of amide moiety into ring A by Beckmann rearrangement were synthesized. In series 1, the ring A was converted to caprolactam, and an amide moiety was linked to C-19 of ring A in series 2. Among them, compound 8h exhibited obvious inhibition on HK2 enzyme activity (IC = 9.

View Article and Find Full Text PDF

Despite the increasing need of new antituberculosis drugs, the number of agents approved for the market has fallen to an all-time low. In response to the emerging drug resistance followed, structurally unique chemical entities will be highlighted. decaprenylphosphoryl-β-d-ribose oxidase (DprE1) participating in the biosynthesis of mycobacterium cell wall is a highly vulnerable and validated antituberculosis target.

View Article and Find Full Text PDF

Isocitrate dehydrogenase (IDH) is one of the key enzymes in the tricarboxylic acid cycle, and IDH mutations have been associated with many cancers, including glioblastoma, sarcoma, acute myeloid leukemia, etc. Three natural steroids 1-3 from Ganoderma sinense, a unique and rare edible-medicinal fungi in China, were found as potential IDH1 inhibitors by virtual ligand screening method. Among the three compounds, 3 showed the highest binding affinity to IDH1 with significant calculated binding free energy.

View Article and Find Full Text PDF
Article Synopsis
  • Hexokinase 2 (HK2) is an enzyme crucial for glycolysis that has higher levels in cancer cells, making it a significant target for cancer treatments.
  • Researchers used virtual screening to identify a new steroid from Ganoderma sinense, (22E,24R)-6β-methoxyergosta-7,9(11),22-triene-3β,5α-diol (compound 2), which showed strong binding affinity to HK2.
  • Compound 2, along with 12 related steroid analogues, underwent various tests and was confirmed as the first natural inhibitor of HK2, suggesting it could be a promising candidate for new cancer therapies.
View Article and Find Full Text PDF