Publications by authors named "Kaiyi Niu"

TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG).

View Article and Find Full Text PDF

Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages.

View Article and Find Full Text PDF

Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis.

View Article and Find Full Text PDF

Ubiquitinases are known to catalyze ubiquitin chains on target proteins to regulate various physiological functions like cell proliferation, autophagy, apoptosis, and cell cycle progression. As a member of E3 ligase, ubiquitin protein ligase E3 component n-recognin 5 (UBR5) belongs to the HECT E3 ligase and has been reported to be correlated with various pathophysiological processes. In this review, the authors give a comprehensive insight into the structure and function of UBR5.

View Article and Find Full Text PDF

Background & Aims: CLSPN, a critical component of the S-phase checkpoint in response to DNA replication stress, has been implicated in the pathogenesis of multiple tumor types. The rising incidence of hepatocellular carcinoma (HCC) poses a significant challenge to global public health. Despite this, the specific functions of CLSPN in the development of HCC remain poorly understood.

View Article and Find Full Text PDF

Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes.

View Article and Find Full Text PDF

Background: Increasing evidence elucidated N6-methyladenosine (m6A) dysregulation participated in regulating RNA maturation, stability, and translation. This study aimed to demystify the crosstalk between m6A regulators and the immune microenvironment, providing a potential therapeutic target for patients with hepatocellular carcinoma (HCC).

Methods: Totals of 371 HCC and 50 normal patients were included in this study.

View Article and Find Full Text PDF

Pancreatic adenocarcinoma (PAAD) is the eighth leading cause of cancer-related mortality that causes serious physical and mental burden to human. Reactive oxygen species accumulation and iron overload might enable ferroptosis-mediated cancer therapies. This study was to elusive novel ferroptosis regulator and its association with immune microenvironment and PD-L1 in PAAD.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer deaths worldwide, seriously affecting human community health and care. Emerging evidence has shown that aberrant glycosylation is associated with tumor progression and metastasis. However, the role of glycosylation-related genes in HCC has notbeen reported.

View Article and Find Full Text PDF