Int J Biol Macromol
November 2024
Efforts toward developing wound dressings that effectively monitor healing have become at the forefront of the field of wound healing. However, monofunctionality, biotoxicity, and passive therapy constrain wound patches. Herein, a hypoallergenic wound patch integrating moisture monitoring, motion sensing and electrical stimulation for wound healing is presented.
View Article and Find Full Text PDFBiomedical silk protein optics has become the subject of intensive research aimed at solving the challenges associated with traditional medical devices in terms of biocompatibility and performance balance. With its significant potential for biomedical applications in the field of drug storage and wound monitoring, it is dedicated to reducing the perturbation of neighbouring tissues. The transparency and biocompatibility of silk proteins make them ideal materials in the field of optical device fabrication, effectively overcoming the challenges posed by conventional materials.
View Article and Find Full Text PDFUnicellular eukaryotes that are capable of phago-mixotrophy in the ocean compete for inorganic nutrients and light with autotrophs, and for bacterial prey with heterotrophs. In this study, we ask what the overall prevalence of eukaryotic mixotrophs in the vast open ocean is, and how the availability of inorganic nutrients, light, and prey affects their relative success. We utilized the Oceans eukaryotic 18S rRNA gene and environmental context variables dataset to conduct a large-scale field analysis.
View Article and Find Full Text PDFObjectives: Postoperative acute kidney injury (pAKI) is a serious complication of Stanford type A aortic dissection (TAAD) surgery, which is significantly associated with the inflammatory response. This study aimed to explore the relationship between blood count-derived inflammatory markers (BCDIMs) and pAKI and to construct a predictive model for pAKI.
Methods: Patients who underwent TAAD surgery were obtained from our center and the Medical Information Mart for Intensive Care (MIMIC)-IV database.
Biomedical dressings have been comprehensively explored for wound healing; however, the complicated manufacturing process and mono-function of the dressing remain critical challenges for further applications. Here, a versatile extrusion three-dimensional (3D) printing strategy to prepare MXene and spidroin-incorporated microneedle scaffolds with photothermal responsive and self-healing properties for promoting wound healing is proposed. Inspired by the cactus, the microneedle scaffold is composed of a top porous scaffold, and microneedles whose inverse opal (IO) photonic crystal (PC) structure and the ample space between the scaffold gaps endow the microneedle scaffold with high drug-carrying capacity.
View Article and Find Full Text PDF