Background: Alzheimer's Disease (AD) is characterized by a progressive neurodegenerative process leading to cognitive decline and functional impairment. Endocrine factors, particularly sex hormones and their binding proteins, play a critical role in AD pathophysiology. Understanding the relationship between these factors and AD is essential for developing targeted interventions.
View Article and Find Full Text PDFBreast cancer (BC) is the most prevalent malignant tumor in women worldwide with high morbidity and mortality. NSUN2, a crucial RNA methyltransferase, plays a pivotal role in regulating the proliferation and metastasis of tumor cells. Our study demonstrated that NSUN2 is upregulated in BC tissues and cell lines, and its high expression is associated with a poor prognosis in BC patients.
View Article and Find Full Text PDFEarly diagnosis is the key to improving the prognosis of breast cancer (BC) patients; however, there are currently no circulating biomarkers that demonstrate good sensitivity and specificity. This study applied circular RNA (circRNA) microarray analysis, screening, and verification in BC plasma samples to identify three tumor-derived differentially expressed circRNAs: hsa_circ_0000091, hsa_circ_0067772, and hsa_circ_0000512. We constructed a diagnostic model using logistic regression analysis in the training set and established an optimal diagnostic model based on the three circRNAs, which showed sensitivity, specificity, and area under the curve (AUC) values of .
View Article and Find Full Text PDFThe long noncoding RNA called MIR22 host gene (MIR22HG) was previously identified as a tumor suppressor in several cancers. However, the biological function of MIR22HG in breast cancer remains unknown. In this study, we aimed to determine the function and molecular mechanism of MIR22HG in breast cancer progression using transcriptomics and biotechnological techniques.
View Article and Find Full Text PDFMicroRNA (miR)-497 has been reported as a tumor suppressor in various cancer types. Nonetheless, the regulation of triple-negative breast cancer (TNBC) by miR-497 remains poorly understood. The present study aimed to investigate the potential function and mechanism of miR-497 in TNBC.
View Article and Find Full Text PDFBreast cancer (BC) is one of the most common malignancies and its mortality is the highest among females. Circular RNAs (circRNAs), a novel group of non-coding RNAs, play an important regulatory role in angiogenesis and cancer progression. Hsa_circ_0053063 is a circRNA generated from several exons of HADHA.
View Article and Find Full Text PDFBackground: Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most aggressive subtypes of breast cancer, which has few effective targeted therapies. Various sources of evidence confirm that microRNAs (miRNAs) contribute to the progression and metastasis of human breast cancer. However, the molecular mechanisms underlying the changes in miRNAs expression and the regulation of miRNAs functions have not been well clarified.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) has the highest recurrence, metastasis and mortality rate of all breast cancer subtypes, due to its typically more aggressive characteristics and lack of effective targeted treatment options. The Hippo pathway is a signaling cascade composed of a group of conserved kinases, which serves an important role in almost all cancer types. Both circular RNAs (circRNAs) and microRNAs (miRNAs) are types of non‑coding RNAs, which influence cancer progression.
View Article and Find Full Text PDFBackground: Human ovarian cancer specific transcript 2 (HOST2) is a long non-coding RNA (lncRNA) reported to be specifically high expressed in human ovarian cancer. However, the mechanism that how HOST2 regulates triple negative breast cancer (TNBC) need to be explored.
Methods: In this study, expression of HOST2 was determined in 40 TNBC patients and matched non-cancerous tissues by qRT-PCR and in situ hybridization (ISH) assay.
The aim of the present study was to define the function of microRNA‑424‑5p (miR‑424) in breast cancer cells. The present study investigated the level and the potential function of miR‑424 in breast cancer by reverse transcription‑quantitative polymerase chain reaction assays. miR‑424 expression was decreased in the majority of human breast cancer specimens and cell lines used in the present study.
View Article and Find Full Text PDFAberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells.
View Article and Find Full Text PDFBackground/aims: Dysregulated expression of WW domain-binding protein 2 (WBP2) is associated with poor prognosis in ER+ breast cancer patients. However, its role in triple negative breast cancer (TNBC) has not been previously assessed. Therefore, we aimed to elucidate the functional mechanism of WBP2 in TNBC cells.
View Article and Find Full Text PDFApoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and then enhancing the transcriptional activities toward pro‑apoptosis genes. ASPP2 has recently been reported to serve a major role in p53‑independent pathways. Triple‑negative breast cancer (TNBC) is a type of breast cancer that is more aggressive and highly lethal when p53 is mutated.
View Article and Find Full Text PDFMicroRNAs (miRNAs/miRs) are 19-25 nucleotide-long, non-coding RNAs that regulate the expression of target genes at the post-transcriptional level. In the present study, the role of miR-340 in breast cancer (BC) was investigated. The overexpression of miR-340 significantly inhibited the proliferation, migration and invasion of human breast MDA-MB-231 cancer cells .
View Article and Find Full Text PDFRAB1A acts as an oncogene in various cancers, and emerging evidence has verified that RAB1A is an mTORC1 activator in hepatocellular and colorectal cancer, but the role of RAB1A in breast cancer remains unclear. In this investigation, RAB1A siRNA was successfully transfected in MDA-MB-231 and BT-549 human triple-negative breast cancer cells, and verified by real‑time quantitative polymerase chain reaction and western blotting. Then, MTT cell proliferation, colony formation, cell invasion and wound healing assays were performed to characterize the function of RAB1A in the breast cancer cell lines.
View Article and Find Full Text PDFThe purpose of this study was to examine the expression levels of microRNA-7 (miR-7) in human thyroid papillary cancer and its potential role in disease pathogenesis. The expression levels of different miRNAs were detected by miRNA-microarray analysis in ten thyroid papillary cancer specimens and adjacent normal thyroid cancer tissues. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to determine the expression level of miR-7 in both thyroid papillary cancer tissues and cell lines.
View Article and Find Full Text PDFDysregulation of microRNAs (miRNAs) plays a critical role in cancer progression. They can act as either oncogenes or tumor suppressor genes in human cancer. The purpose of this study was to investigate the crucial role of miR-135b in breast cancer and to validate whether miR-135b could regulate proliferation of breast cancer cells by effecting specific targets in the Hippo pathway.
View Article and Find Full Text PDFForkhead box protein O1 (FOXO1) is a multifunctional transcription factor of the forkhead family. It may function as a tumor suppressor through its ability to regulate cellular events, including cell proliferation, apoptosis, and cell cycle control. As reported, FOXO1 is downregulated in papillary thyroid carcinoma (PTC).
View Article and Find Full Text PDFMicroRNAs (miRNAs) are kind of small non-coding RNAs that negatively regulate gene expression at post-transcription level, and those non-coding RNAs appear to play a key role in tumorigenesis. The aim of this study was to investigate the biological role of miR-96 in papillary thyroid carcinoma (PTC) cell lines. We identified miR-96 to be up-regulated in PTC specimens in comparison to matched normal tissues by microRNA microarray and RT-qPCR analysis (P < 0.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a small class of non-coding RNAs that are extensively deregulated in various cancers. They can act as either oncogenes or tumor suppressor genes in human cancer. The purpose of this study was to investigate the crucial role of miR-506 in breast cancer and to validate whether miR-506 could regulate proliferation of breast cancer cells by targeting YAP (Yes-associated protein) gene.
View Article and Find Full Text PDFBackground: Fine needle aspiration cytology (FNAC) and fine needle nonaspiration cytology (FNNAC) are useful cost-effective techniques for preoperatively assessing thyroid lesions. Both techniques have advantages and disadvantages, and there is controversy over which method is superior. This meta-analysis was performed to evaluate the differences between FNAC and FNNAC for diagnosis of thyroid nodules.
View Article and Find Full Text PDFBackground: Dual-specificity phosphatase 6 (DUSP6) is a negative feedback mechanism of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), that is associated with cellular proliferation and differentiation. It has been reported that the expression of DUSP6 in different types of breast cancer is diverse and therefore it has altered functions in various types of breast cancer. Our aim was to explore the exact function of DUSP6 in triple-negative breast cancer cells (MDA-MB-231 cell) and to determine whether the suppression of DUSP6 by small interfering RNA (siRNA) and mircroRNA (miRNA) inhibits the growth of human MDA-MB-231 breast cancer cells.
View Article and Find Full Text PDF