Publications by authors named "Kaiyan Lou"

Formaldehyde (FA) is an endogenous one-carbon metabolite and an environmental pollutant and carcinogen. Elevated FA levels are associated with many diseases. Methods for the convenient and detection of FA levels are of great significance for understanding FA's biofunctions and signalling pathways.

View Article and Find Full Text PDF

The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug.

View Article and Find Full Text PDF

Aldehyde dehydrogenase 2 (ALDH2) deficiency caused by   genetic variant is present in more than 560 million people of East Asian descent, which can be identified by apparent facial flushing from acetaldehyde accumulation after consuming alcohol. Recent findings indicated that ALDH2 also played a critical role in detoxification of formaldehyde (FA). Our previous studies showed that FA could enhance macrophagic inflammatory responses through the induction of HIF-1α-dependent glycolysis.

View Article and Find Full Text PDF

Macrophages are important innate immune cells which can be polarized into heterogeneous populations. The inflammatory-activated M1 cells are known to be involved in all kinds of inflammatory diseases, which were also found to be associated with dysregulation of iron metabolism. While iron overload is known to induce M1 polarization, the valence states of iron and its intracellular dynamics during macrophage inflammatory activation have not been identified.

View Article and Find Full Text PDF

Arsenite (As) is a group one human carcinogen, which has been associated with many diseases. Previous studies indicated that As could inhibit wound healing and repair. M2a cells are known as tissue remodeling macrophages, which play an important role in wound repair process.

View Article and Find Full Text PDF

An anthracenecarboximide-guanidine based turn-on fluorescent probe ANC-DCP-1 for selective detection of glyoxals (methylglyoxal and glyoxal, GOS) over formaldehyde under weak acidic conditions around pH 6.0 was reported. The probe showed great potential in studying relative GOS levels in weak acidic biological fluids such as in urine for diabetic diagnosis and prognosis, and also found application in the food industry such as for fast unique manuka factor (UMF) scale determination of Manuka honey.

View Article and Find Full Text PDF

A fluorescent probe (COU-LIP-1) for monitoring labile Fe(II) pools (LIP) with high selectivity and sensitivity was developed utilizing coumarin 343 as the fluorophore and 3-nitrophenylazanyl ester as both the reactive group and the fluorescence quenching group. Fe(II)-induced reductive cleavage of the N-O bond results in a turn-on response a photo-induced photon transfer (PET) mechanism. The probe was applied for monitoring labile iron(II) changes in M1 and M2a macrophage activations and also erastin-induced ferroptosis, providing a powerful tool for selectively sensing LIP under both physiological and stressed conditions.

View Article and Find Full Text PDF

Environmental exposure to formaldehyde is known to be associated with cancers and many other diseases. Although formaldehyde has been classified as a group I carcinogen, the molecular mechanisms of its carcinogenicity are still not fully understood. Formaldehyde is also involved in the folate-driven one‑carbon metabolism, and excess amount of formaldehyde was found to interfere with other metabolic pathways including glycolysis, which can enhance Warburg effect and induce immunosuppression in tumor microenvironment.

View Article and Find Full Text PDF

Formaldehyde (FA) is widely used in chemical industry, which is also known as a common indoor air pollutant. Exposure of FA has been associated with multiple detrimental health effects. Our previous study showed that FA could inhibit the development of T lymphocytes in mice, leading to impaired immune functions.

View Article and Find Full Text PDF

An "AND"-logic-gate-based fluorescent probe NAP-DCP-4 with dual reactive sites is reported, which has improved selectivity for methylglyoxal over glyoxal, featuring formaldehyde-enhanced methylglyoxal detection and irreversible and reversible turn-on fluorescence responses at different excitation wavelengths. Its cell-impermeability enables facile monitoring of extracellular methylglyoxal level changes in the supernatant of activated macrophages.

View Article and Find Full Text PDF

The lack of effective chemical tools capable of dynamic tracking of labile glyoxal species (GOS) [e.g., methylglyoxal (MGO) and glyoxal (GO)] levels with high selectivity over other relevant electrophilic species, particularly, formaldehyde (FA) and nitric oxide (NO), has significantly hampered the understanding of their roles in a complex metabolic network and disease progressions.

View Article and Find Full Text PDF

Mebendazole (MBZ) is a tubulin-suppressive antihelmintic agent with low toxicity, which has been repurposed to treat different types of tumors. Chemoresistance is quite common in refractory or relapsed T cell acute lymphoblastic leukemia (T-ALL), which leads to dismal chances of recovery. In this study, MBZ was found to suppress the proliferation and reduce the viability of T-ALL cell line, CCRF-CEM, and its chemoresistant derivative, CEM/C1, at nanomolar concentrations.

View Article and Find Full Text PDF

A novel oral protein delivery system with enhanced intestinal penetration and improved antigen stability based on chitosan (CS) nanoparticles and antigen-cyclodextrin (CD) inclusion complex was prepared by a precipitation/coacervation method. Ovalbumin (OVA) as a model antigen was firstly encapsulated by cyclodextrin, either β-cyclodextrin (β-CD) or carboxymethyl-hydroxypropyl-β-cyclodextrin (CM-HP-β-CD) and formed OVA-CD inclusion complexes, which were then loaded to chitosan nanoparticles to form OVA loaded β-CD/CS or CM-HP-β-CD/CS nanoparticles with uniform particle size (836.3 and 779.

View Article and Find Full Text PDF

The controversy surrounding the use of diphtheria toxin (DT) as a therapeutic agent against tumor cells arises mainly from its unexpected harmfulness to healthy tissues. We encoded the cytotoxic fragment A of DT (DTA) as an objective gene in the Light-On gene-expression system to construct plasmids pGAVPO (pG) and pU5-DTA (pDTA). Meanwhile, a cRGD-modified ternary complex comprising plasmids, chitosan, and liposome (pG&pDTA@cRGD-CL) was prepared as a nanocarrier to ensure transfection efficiency.

View Article and Find Full Text PDF

Aim: To determine whether the use of a mixed polymeric micelle delivery system based on vitamin E succinate (VES)-grafted-chitosan oligosaccharide (CSO)/VES-grafted-chitosan (CS) mixed micelles (VES-g-CSO/VES-g-CS MM) enhances the delivery of C-DMSA, a theranostic fluorescent probe, for Hg detection and detoxification in vitro and in vivo.

Methods: Mixed micelles self-assembled from two polymers, VES-g-CSO and VES-g-CS, were used to load C-DMSA and afforded C-DMSA@VES-g-CSO/VES-g-CS MM for cell and in vivo applications. Fluorescence microscopy was used to assess C-DMSA cellular uptake and Hg detection in L929 cells.

View Article and Find Full Text PDF

Orlistat is an FDA-approved over-the-counter drug to treat obesity through the inhibition of lipase activity. Macrophages, which express high levels of lipoprotein lipase (LPL), are important phagocytes in the innate immune system. Our previous studies indicated that environmentally relevant concentrations of arsenite (As) could inhibit the major immune functions of macrophages.

View Article and Find Full Text PDF

A naphthalimide-aminal-based fluorescent donor (NAP-FAD-1) is a pH-sensitive smart donor, which features accelerated FA release at pH 5.0 compared to that at pH 7.4 and fluorescence turn-on readout for facile tracking and quantification of FA release.

View Article and Find Full Text PDF

An important challenge for reaction-based fluorescent probes is that they generally require analyte consumption for fluorescence signal generation, thus creating potential perturbation of native analyte homeostasis or change of local concentrations. Herein, we reported two formaldehyde (FA) regeneration fluorescent probes, NAP-FAP-1 and NAP-FAP-2. An unprecedented regiospecific FA-induced intramolecularity strategy is implemented in the probe design, which adopts 3-(benzylamino)-succinimide as the FA-selective reaction group.

View Article and Find Full Text PDF

Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development.

View Article and Find Full Text PDF

Herein, a simple two-photon turn-on fluorescent probe, -(6-acyl-2-naphthayl)-maleimide (1), based on a dual PeT/ICT quenching mechanism is reported for the highly sensitive and selective detection of cysteine (Cys) over other biothiols. The probe was applied in the two-photon imaging of Cys in cultured HeLa cells, excited by a near-infrared laser at 690 nm.

View Article and Find Full Text PDF

-cyclodextrin (CD) grafted N-maleoyl chitosan (CDNMCS) with two different degrees of substitution (DS) of -maleoyl (DS = 21.2% and 30.5%) were synthesized from maleic anhydride and chitosan bearing pendant cyclodextrin (CDCS).

View Article and Find Full Text PDF

We reported a new approach to achieve enhanced selectivity with a drastic turn-on fluorescence response for the detection of Cys through dual intramolecular cyclization processes and dual PET and ICT quenching mechanisms by the incorporation of an acrylate and a maleimide group onto two opposite sides of a single coumarin fluorophore.

View Article and Find Full Text PDF

γ-Glutamyltranspetidase (GGT) is a cell-membrane-bound enzyme which selectively catalyzes cleavage of the γ-glutamyl bond of glutathione (GSH). It has been identified to be overexpressed in a number of malignant tumor cells. Therefore, fluorescent probes for fast and selective detection of GGT activities are greatly needed.

View Article and Find Full Text PDF

Differentiation of biologically important thiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) is still a challenging task. Herein, we present a novel fluorescent chemodosimeter capable of selectively detecting Cys over other biothiols including Hcy and GSH and other amino acids by a facile thiol-Michael addition/transcyclization rearrangement cascade click process. The unique transcyclization step is critical for the selectivity as a result of the kinetically favorable formation of a six-membered ring with the Cys Michael adduct.

View Article and Find Full Text PDF