Background: Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis.
Methods: The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database.
Sepsis is a severe systemic reaction disease induced by bacteria and virus invading the bloodstream and subsequently causing multiple systemic organ dysfunctions. For example, the kidney may stop producing urine, or the lungs may stop taking in oxygen. Recent studies have shown that long non-coding RNAs (lncRNAs) are related to the dysfunction of organs in sepsis.
View Article and Find Full Text PDFNasopharyngeal carcinoma (NPC) is an epithelial malignancy ubiquitously associated with Epstein-Barr virus (EBV). EBV generates various viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. These BART miRNAs are abundantly expressed in NPC, but their functions and molecular mechanisms remain largely unknown.
View Article and Find Full Text PDFInvasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with esophageal squamous cell carcinoma (ESCC). The lack of effective treatment strategies for metastatic ESCC is the major cause of the low survival rate. Therefore, it is crucial to understand the molecular mechanisms underlying ESCC metastasis and identify potential biomarkers for targeted therapy.
View Article and Find Full Text PDF