Arginine (Arg) is involved in tissue metabolism and regulates the immune function; thereby, achieving the detection of Arg is crucial for early diagnosis and treatment of diseases. Herein, dual ratiometric fluorescence sensors were prepared with the blue emission of levorotatory/dextrorotatory carbon dots (CDs) and the red emission of porphyrin (L/D-CDs-PP) for the sensitive and portable detection of Arg. Interestingly, L-CDs-PP and D-CDs-PP displayed not only the dual emission peaks at 493 and 650 nm but also different response modes to Arg; thus, they could serve as dual ratiometric fluorescence sensors to achieve the accurate and reliable detection of Arg, with the detection limit of 23.
View Article and Find Full Text PDFTo address the design and application requirements for USVs (Unmanned Surface Vehicles) to autonomously escape from constrained environments using a minimal number of sensors, we propose a path planning algorithm based on the RRT* (Rapidly Exploring Random Tree*) method, referred to as BN-RRT* (Blind Navigation Rapidly Exploring Random Tree*). This algorithm utilizes the positioning information provided by the GPS onboard the USV and combines collision detection data from collision sensors to navigate out of the trapped space. To mitigate the inherent randomness of the RRT* algorithm, we integrate the Artificial Potential Field (APF) method to enhance directional guidance during the sampling process.
View Article and Find Full Text PDFIron death is a novel type of programmed cell death caused by excessive accumulation of iron-dependent lipid peroxidation products; however, the function of iron death during porcine oocyte maturation and embryo growth is poorly understood. This study was conducted to investigate the mechanism of ferric ammonium citrate (FAC) in regulating iron death in mature oocytes in vitro through the NRF2 signaling pathway, and subsequent embryonic development. The experiment was divided into four groups: 0 (control group), 2, 5, and 10 μM FAC.
View Article and Find Full Text PDFBackground: Deep learning has made significant advancements in the field of digital pathology, and the integration of multiple models has further improved accuracy. In this study, we aimed to construct a combined prognostic model using deep learning-extracted features from digital pathology images of pancreatic ductal adenocarcinoma (PDAC) alongside clinical predictive indicators and to explore its prognostic value.
Methods: A retrospective analysis was conducted on 142 postoperative pathologically confirmed PDAC cases.
Elevated serum cholesterol metabolism is associated with a reduced risk of lung cancer. Disrupted cholesterol metabolism is evident in both lung cancer patients and tumor cells. Inhibiting tumor cell cholesterol uptake or biosynthesis pathways, through the modulation of receptors and enzymes such as liver X receptor and sterol-regulatory element binding protein 2, effectively restrains lung tumor growth.
View Article and Find Full Text PDFAs an antioxidant and preservative agent, nitrite (NO) plays an essential role in the food industry to maintain freshness or inhibit microbial growth. However, excessive addition of NO is detrimental to health, so accurate and portable detection of NO is critical for food quality control. Notably, the selectivity of most carbon dots (CDs)-based fluorescence sensors was not enough due to the nonspecific interaction mechanism of hydrogen bond, electrostatic interaction and inner filter effect etc.
View Article and Find Full Text PDFBackground And Objectives: With the global population aging at an unprecedented pace, the imminent surge in falls and fall-induced injuries necessitates urgent attention. Innovative assistive technologies are crucial in addressing this daunting challenge. This study aimed to evaluate the mechanical properties, efficacy, safety, and user experience of the Intelligent Bone Protection Vest (IBPV), a novel, reusable, non-airbag wearable device.
View Article and Find Full Text PDFThe advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno and Aytan-Aktug), an ML baseline and the rule-based ResFinder by training and testing each of them across 78 species-antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods.
View Article and Find Full Text PDFPresently, most fluorescent probes for amino acid enantiomers detection require metal ions participation, which greatly increases the detection steps and costs, and affects the accuracy of detection results. To solve this problem, a dual pattern recognition sensor of chiral carbon dots (L-Try-Thr-CDs) with a quantum yield of 36.23 % was prepared by a one-step solvothermal method for the highly selective detection of lysine (Lys) enantiomers.
View Article and Find Full Text PDFAtmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition.
View Article and Find Full Text PDFCadmium (Cd) stable isotopes provide a novel technique to investigate the fate of Cd in the environment, but challenges exist for tracing the sources in the plants. We performed individual rice leaf and root exposures to dry and wet deposition using customized open-top chambers (OTCs) in the greenhouse and in the field next to a smelter, respectively. The field experiment also included a control without Cd deposition and a "full" treatment.
View Article and Find Full Text PDFBackground: This study aimed to investigate the risk factors for 30-day mortality in patients with malignant biliary obstruction (MBO) after endoscopic retrograde cholangiopancreatography (ERCP) with endobiliary metal stent placement. Furthermore, we aimed to construct and visualize a prediction model based on LASSO-logistic regression.
Methods: Data were collected from 245 patients who underwent their first ERCP with endobiliary metal stent placement for unresectable MBO between June 1, 2013, and August 31, 2021.
The atmospheric deposition of copper (Cu) and cadmium (Cd) was monitored in eight sites around a Cu smelter with similar distance to verify whether tree leaf and ring can be used as bio-indicators to track spatial pollution record. Results showed that total atmospheric deposition of Cu (103-1215 mg/m/year) and Cd (3.57-11.
View Article and Find Full Text PDFRough surfaces have been widely considered as negative factors affecting cavitation erosion resistance. However, this study presented the opposite result. Here, 316L stainless steel substrates and the arc-sprayed 316L stainless steel coatings were subjected to a specific grinding process that introduced scratches on the surfaces.
View Article and Find Full Text PDFTcpC is a multifunctional virulence factor of Uropathogenic (UPEC). Macrophages can differentiate into two different subsets M1 and M2 that play distinct roles in anti-infection immunity. Here, we investigate the influence of TcpC on M1/M2 polarization and the potential mechanisms.
View Article and Find Full Text PDF