Photodynamic therapy (PDT) stands as an efficacious modality for the treatment of cancer and various diseases, in which optimization of the electron transfer and augmentation of the production of lethal reactive oxygen species (ROS) represent pivotal challenges to enhance its therapeutic efficacy. Empirical investigations have established that the spontaneous initiation of redox reactions associated with electron transfer is feasible and is located in the gas-liquid interfaces. Meanwhile, nanobubbles (NBs) are emerging as entities capable of furnishing a plethora of such interfaces, attributed to their stability and large surface/volume ratio in bulk water.
View Article and Find Full Text PDFThe freezing process of aqueous solutions plays a crucial role in various applications including cryopreservation, glaciers, and frozen materials. However, less research has focused on the influence of nanoscale gas bubble formation or collapse in water during freezing, which may significantly impact the formation of ice crystals. Herein, we report for the first time that the freezing process can produce nanobubbles in aqueous solutions, and their size and number concentration could be changed by different cooling rates, i.
View Article and Find Full Text PDFAntioxidation is in demand in living systems, as the excessive reactive oxygen species (ROS) in organisms lead to a variety of diseases. The conventional antioxidation strategies are mostly based on the introduction of exogenous antioxidants. However, antioxidants usually have shortcomings of poor stability, non-sustainability, and potential toxicity.
View Article and Find Full Text PDFRadiation on aqueous solutions can induce water radiolysis with products of radicals, H, HO, and so on, and their consequent biological effects have long been interested in radiation chemistry. Unlike the decomposition of water by electric current that produces a significant number of bubbles, the gas products from the radiolysis of water are normally invisible by bare eyes, little is known on whether nanosized bubbles can be produced and what their dynamics are upon irradiation. Here, we first presented the formation of nanoscale bulk bubbles by irradiating pure water with accelerated electrons and their concentration and size distribution changes with the dose and rate of irradiation.
View Article and Find Full Text PDFMicropancake, a flat domain with micrometer-scale lateral size and a few nanometer thickness, is usually accompanied by the generation of interfacial nanobubbles at the liquid/solid surfaces. Unlike the nanobubbles, micropancakes are difficult to be produced efficiently, impeding further investigations of their mysterious properties. Very recently, An et al.
View Article and Find Full Text PDFSurface nanodroplets have received extensive attention recently due to their potential in the fabrication of functional materials with nanostructures and chemical reactions at micro- and nanoscales. Although the effect of dissolved gas in water has been realized in some important processes such as spontaneous emulsification of oil droplets in water, its roles in the wetting behavior of surface nanodroplets at the hydrophobic interface have been largely neglected. Here, we focused on the influence of dissolved gas on the interfacial properties of surface nanodroplets and characterized their morphological evolution when exposed to different air-saturated water samples.
View Article and Find Full Text PDFThe fact that biologically inert gases can significantly affect the biological function of proteins still lacks a full understanding because they are usually chemically stable and weakly absorbed by biological molecules. Recently, nanobubbles were proposed to play an important role in the activity of a protein ( ; 10176). In this study, we developed a controllable method to produce high-concentration krypton (Kr) gas nanobubbles in pure water and measured the concentration influence of those Kr nanobubbles on pepsin protein activity.
View Article and Find Full Text PDFNanoparticle-decorated polymer-coated sub-microbubbles (NP-P-coated SMBs), as proved, have shown promising application prospects in ultrasound imaging, magnetic resonance imaging, drug delivery, and so forth. However, the quantitative evaluation of the stability and mechanical properties of single NP-P-coated SMB is absent. Here, we first reported the stiffness and Young's modulus of single NP-P-coated SMB obtained by the PeakForce mode of atomic force microscopy.
View Article and Find Full Text PDF