Proc Natl Acad Sci U S A
December 2024
In many complex systems encountered in the natural and social sciences, mechanisms governing system dynamics at a microscale depend upon the values of state variables characterizing the system at coarse-grained, macroscale (Goldenfeld and Woese, 2011, Noble et al., 2019, and Chater and Loewenstein, 2023). State variables, in turn, are averages over relevant probability distributions of the microscale variables.
View Article and Find Full Text PDFSpecies-abundance distributions (SADs) describe the spectrum of commonness and rarity in a community. Beyond the universal observation that most species are rare and only a few common, more-precise description of SAD shape is controversial. Furthermore, the mechanisms behind SADs and how they vary along environmental gradients remain unresolved.
View Article and Find Full Text PDFTo advance understanding of biodiversity and ecosystem function, ecologists seek widely applicable relationships among species diversity and other ecosystem characteristics such as species productivity, biomass, and abundance. These metrics vary widely across ecosystems and no relationship among any combination of them that is valid across habitats, taxa, and spatial scales, has heretofore been found. Here we derive such a relationship, an equation of state, among species richness, energy flow, biomass, and abundance by combining results from the Maximum Entropy Theory of Ecology and the Metabolic Theory of Ecology.
View Article and Find Full Text PDFThe Maximum Entropy Theory of Ecology (METE) predicts the shapes of macroecological metrics in relatively static ecosystems, across spatial scales, taxonomic categories and habitats, using constraints imposed by static state variables. In disturbed ecosystems, however, with time-varying state variables, its predictions often fail. We extend macroecological theory from static to dynamic by combining the MaxEnt inference procedure with explicit mechanisms governing disturbance.
View Article and Find Full Text PDF