Human noroviruses (NoVs) are responsible for 50% of food-related disease outbreaks and are notably associated with shellfish consumption. Despite the detrimental health impacts of human NoV-contaminated seafood to public health, there is a lack of knowledge on the physicochemical conditions that govern NoV transmission in aquatic ecosystems. In the present study, we investigated the propensity for NoVs to associate with aquatic aggregates, which have been shown to efficiently deliver nano-sized particles to shellfish.
View Article and Find Full Text PDFElevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach.
View Article and Find Full Text PDFSome molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs.
View Article and Find Full Text PDFThe contribution of fecal pollution from dogs in urbanized areas can be significant and is an often underestimated problem. Microbial source tracking methods (MST) utilizing quantitative PCR of dog-associated gene sequences encoding 16S rRNA of Bacteroidales are a useful tool to estimate these contributions. However, data about the performance of available assays are scarce.
View Article and Find Full Text PDFMany PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thoroughly evaluated. Knowledge of factors influencing PCR in different laboratories is vital to future technology transfer for use of MST methods as a tool for water quality management.
View Article and Find Full Text PDF