Publications by authors named "Kaitlyn M Tsuyuki"

Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts.

View Article and Find Full Text PDF

Plants use intricate mechanisms to adapt to changing iron conditions because iron is essential and also one of the most limiting nutrients for plant growth. Furthermore, iron is potentially toxic in excess and must be tightly regulated. Previously, we showed that chromatin remodeling via histone 3 lysine 27 trimethylation (H3K27me3) modulates the expression of FIT-dependent genes under iron deficiency in roots.

View Article and Find Full Text PDF

Iron is an essential micronutrient for nearly all organisms, but excessive iron can lead to the formation of cytotoxic reactive oxygen species. Therefore, iron acquisition and homeostasis must be tightly regulated. Plants have evolved complex mechanisms to optimize their use of iron, which is one of the most limiting nutrients in the soil.

View Article and Find Full Text PDF