Impairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery.
View Article and Find Full Text PDFImpairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery.
View Article and Find Full Text PDFChronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. Here, we systematically varied the timing of VNS relative to tactile rehabilitation to determine the paradigm that yields the greatest degree of somatosensory recovery after peripheral nerve injury (PNI).
View Article and Find Full Text PDFBackground: Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation.
Objective: Here, we characterize the amount, intensity, frequency, and duration of VNS therapy paradigms to determine the optimal dosage for VNS-dependent enhancement of recovery in a model of peripheral nerve injury (PNI).