Psychopharmacology (Berl)
September 2022
Rationale: Learning the association between rewards and predictive cues is critical for appetitive behavioral responding. The mesolimbic dopamine system is thought to play an integral role in establishing these cue-reward associations. The dopamine response to cues can signal differences in reward value, though this emerges only after significant training.
View Article and Find Full Text PDFDopamine neurons respond to cues to reflect the value of associated outcomes. These cue-evoked dopamine responses can encode the relative rate of reward in rats with extensive Pavlovian training. Specifically, a cue that always follows the previous reward by a short delay (high reward rate) evokes a larger dopamine response in the nucleus accumbens (NAc) core relative to a distinct cue that always follows the prior reward by a long delay (low reward rate).
View Article and Find Full Text PDFLearning to avoid aversive outcomes is an adaptive strategy to limit one's future exposure to stressful events. However, there is considerable variance in active avoidance learning across a population. The mesolimbic dopamine system contributes to behaviors elicited by aversive stimuli, although it is unclear if the heterogeneity in active avoidance learning is explained by differences in dopamine transmission.
View Article and Find Full Text PDFThe dopamine system responds to reward-predictive cues to reflect a prospective estimation of reward value, although its role in encoding retrospective reward-related information is unclear. We report that cue-evoked dopamine release in the nucleus accumbens core encodes the time elapsed since the previous reward or rather the wait time. Specifically, a cue that always follows the preceding reward with a short wait time elicits a greater dopamine response relative to a distinct cue that always follows the preceding reward with a long wait time.
View Article and Find Full Text PDF