Publications by authors named "Kaitlyn L Hoyt"

Background: Analyzing next-generation sequencing data is difficult because datasets are large, second generation sequencing platforms have high error rates, and because each position in the target genome (exome, transcriptome, etc.) is sequenced multiple times. Given these challenges, numerous bioinformatic algorithms have been developed to analyze these data.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes.

View Article and Find Full Text PDF

Background: Since the advent of next-generation sequencing many previously untestable hypotheses have been realized. Next-generation sequencing has been used for a wide range of studies in diverse fields such as population and medical genetics, phylogenetics, microbiology, and others. However, this novel technology has created unanticipated challenges such as the large numbers of genetic variants.

View Article and Find Full Text PDF