Publications by authors named "Kaitlyn K Thompson"

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by peripheral immune cell infiltration into the brain and spinal cord, demyelination, glial cell activation, and neuronal damage. Currently there is no cure for MS, however, available disease-modifying agents minimize inflammation in the CNS by various mechanisms. Approved drugs lessen severity of the disease and delay disease progression, however, they are still suboptimal as patients experience adverse effects and varying efficacies.

View Article and Find Full Text PDF

Studying monocytic cells in isolated systems contributes significantly to the understanding of innate immune physiology. Functional assays produce read outs which can be used to measure responses to selected stimuli, such as pathogen exposure, antigen loading, and cytokine stimulation. Integration of these results with high quality models allows for the development of therapeutics which target these cell populations.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of peripheral immune cells into the central nervous system, demyelination, and neuronal damage. There is no cure for MS, but available disease-modifying therapies can lessen severity and delay progression. However, current therapies are suboptimal due to adverse effects.

View Article and Find Full Text PDF

Lunar regolith samples collected during previous Apollo missions were found to contain components that were established to be toxic to humans; however, the health effects due to inhalation of lunar soil as a whole are still unknown. Macrophages residing in the alveolar sacs of the lungs constitute one of the last lines of defense against inhaled particulates before entry into the bloodstream. Here, we examine the macrophage response to lunar simulants that are similar in chemical composition to the lunar regolith.

View Article and Find Full Text PDF

Though promoting remyelination in multiple sclerosis (MS) has emerged as a promising therapeutic strategy, it does not address inflammatory signals that continue to induce neuronal damage and inhibit effectiveness of repair mechanisms. Our lab has previously characterized the immunomodulatory tetrapeptide, tuftsin, which induces an anti-inflammatory shift in microglia and macrophages. This targeted anti-inflammatory agent improves physical deficits in experimental autoimmune encephalomyelitis (EAE), an animal model of MS.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by progressive neuronal demyelination and degeneration. Much of this damage can be attributed to microglia, the resident innate immune cells of the CNS, as well as monocyte-derived macrophages, which breach the blood-brain barrier in this inflammatory state. Upon activation, both microglia and macrophages release a variety of factors that greatly contribute to disease progression, and thus therapeutic approaches in MS focus on diminishing their activity.

View Article and Find Full Text PDF

The National Directors of Graduate Studies biennial meeting is a forum for directors from pharmacology and physiology graduate programs to discuss challenges and best practices for programs that are preparing trainees to be successful in the biomedical workforce. The 2017 meeting was held on the campus of Stony Brook University in Stony Brook, NY. Over the course of the 3-day event, several themes evolved, including graduate education training and curricula, diversity and career development, and scientific rigor and communication.

View Article and Find Full Text PDF

Astrocytes are the most abundant cells in the brain. They support neurons, adjust synaptic strength, and modulate neuronal signaling, yet the full extent of their functions is obscured by the dearth of methods for their visualization and analysis. Here, we report a chemical reporter that targets small molecules specifically to astrocytes both in vitro and in vivo.

View Article and Find Full Text PDF

Autoimmune diseases of the central nervous system (CNS) involve inflammatory components and result in neurodegenerative processes. Microglia, the resident macrophages of the CNS, are the first responders after insults to the CNS and comprise a major link between the inflammation and neurodegeneration. Here, we will focus on the roles of microglia in two autoimmune diseases: the prevalent condition of multiple sclerosis (MS) and the much rarer Rasmussen's encephalitis (RE).

View Article and Find Full Text PDF