Publications by authors named "Kaitlyn Gaynor"

The discipline of ecology and evolutionary biology (EEB) has long grappled with issues of inclusivity and representation, particularly for individuals with systematically excluded and marginalized backgrounds or identities. For example, significant representation disparities still persist that disproportionately affect women and gender minorities; Black, Indigenous, and People of Color (BIPOC); individuals with disabilities; and people who are LGBTQIA+. Recent calls for action have urged the EEB community to directly address issues of representation, inclusion, justice, and equity.

View Article and Find Full Text PDF

Objectives: With contemporary, human-induced climate change at a crisis point, extreme weather events (e.g., cyclones, heatwaves, floods) are becoming more frequent, intense, and difficult to predict.

View Article and Find Full Text PDF

Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another.

View Article and Find Full Text PDF

When recreating outdoors in remote landscapes, people are encouraged to "leave no trace". However, the mere presence of humans on a trail can elicit changes in animal behavior, potentially compromising the effectiveness of protected areas for wildlife conservation.

View Article and Find Full Text PDF

Background: Movement plays a key role in allowing animal species to adapt to sudden environmental shifts. Anthropogenic climate and land use change have accelerated the frequency of some of these extreme disturbances, including megafire. These megafires dramatically alter ecosystems and challenge the capacity of several species to adjust to a rapidly changing landscape.

View Article and Find Full Text PDF

Anthropogenic pressures threaten biodiversity, necessitating conservation actions founded on robust ecological models. However, prevailing models inadequately capture the spatiotemporal variation in environmental pressures faced by species with high mobility or complex life histories, as data are often aggregated across species' life histories or spatial distributions. We highlight the limitations of static models for dynamic species and incorporate life history variation and spatial distributions for species and stressors into a trait-based vulnerability and impact model.

View Article and Find Full Text PDF

Background: As a globally widespread apex predator, humans have unprecedented lethal and non-lethal effects on prey populations and ecosystems. Yet compared to non-human predators, little is known about the movement ecology of human hunters, including how hunting behavior interacts with the environment.

Methods: We characterized the hunting modes, habitat selection, and harvest success of 483 rifle hunters in California using high-resolution GPS data.

View Article and Find Full Text PDF

Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely.

View Article and Find Full Text PDF

Some animal species shift their activity towards increased nocturnality in disturbed habitats to avoid predominantly diurnal humans. This may alter diel overlap among species, a precondition to most predation and competition interactions that structure food webs. Here, using camera trap data from 10 tropical forest landscapes, we find that hyperdiverse Southeast Asian wildlife communities shift their peak activity from early mornings in intact habitats towards dawn and dusk in disturbed habitats (increased crepuscularity).

View Article and Find Full Text PDF

Competition drives community composition and structure in many ecosystems. Spatial and temporal niche partitioning, in which competing species divide the environment in space or time, are mechanisms that may allow for coexistence among ecologically similar species. Such division of resources may be especially important for carnivores in African savannas, which support diverse carnivore assemblages.

View Article and Find Full Text PDF

Disruption of key species interactions reverberates across an African savanna.

View Article and Find Full Text PDF

Classifying specimens is a critical component of ecological research, biodiversity monitoring and conservation. However, manual classification can be prohibitively time-consuming and expensive, limiting how much data a project can afford to process. Computer vision, a form of machine learning, can help overcome these problems by rapidly, automatically and accurately classifying images of specimens.

View Article and Find Full Text PDF

Extreme weather events perturb ecosystems and increasingly threaten biodiversity. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment-especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor.

View Article and Find Full Text PDF

Predator-prey ecology and the study of animal cognition and culture have emerged as independent disciplines. Research combining these disciplines suggests that both animal cognition and culture can shape the outcomes of predator-prey interactions and their influence on ecosystems. We review the growing body of work that weaves animal cognition or culture into predator-prey ecology, and argue that both cognition and culture are significant but poorly understood mechanisms mediating how predators structure ecosystems.

View Article and Find Full Text PDF

Although the keystone species concept was conceived of over 50 years ago, contemporary efforts to synthesize related literature have been limited. Our objective was to create a list of keystone animal species identified in the literature and to examine the variation in the traits of species and the ecosystem influences they elicit. We documented 230 species considered keystones.

View Article and Find Full Text PDF

Amid a growing disciplinary commitment to inclusion in ecology and evolutionary biology (EEB), it is critical to consider how the use of scientific language can harm members of our research community. Here, we outline a path for identifying and revising harmful terminology to foster inclusion in EEB.

View Article and Find Full Text PDF

Despite growing evidence of widespread impacts of humans on animal behaviour, our understanding of how humans reshape species interactions remains limited. Here, we present a framework that draws on key concepts from behavioural and community ecology to outline four primary pathways by which humans can alter predator-prey spatiotemporal overlap. We suggest that predator-prey dyads can exhibit similar or opposite responses to human activity with distinct outcomes for predator diet, predation rates, population demography and trophic cascades.

View Article and Find Full Text PDF

The biological sciences community is increasingly recognizing the value of open, reproducible and transparent research practices for science and society at large. Despite this recognition, many researchers fail to share their data and code publicly. This pattern may arise from knowledge barriers about how to archive data and code, concerns about its reuse, and misaligned career incentives.

View Article and Find Full Text PDF
Article Synopsis
  • The landscape of fear (LOF) theory explains how prey species navigate different areas based on perceived predation risk while balancing survival needs.
  • Current antipredator behaviors often challenge traditional views, leading researchers to question the general applicability of the LOF framework.
  • The authors propose a 'dynamic' LOF model that includes time and fluctuations in risk, aiming to provide better insights into how predators influence prey behavior and ecological interactions.
View Article and Find Full Text PDF
Article Synopsis
  • Animal populations are facing increased challenges from extreme disturbances like megafires, and understanding their behavioral responses is crucial for survival.
  • In the study of black-tailed deer impacted by the 2018 Mendocino Complex Fire, researchers used GPS data and camera traps to analyze changes in movement, home range size, and body condition.
  • Despite severe habitat loss and reduced body condition due to forage scarcity, deer demonstrated remarkable site fidelity, returning to pre-fire ranges and adapting by selecting for remaining vegetation patches, highlighting their resilience in changing environments.
View Article and Find Full Text PDF

Spatiotemporal variation in predation risk arises from interactions between landscape heterogeneity, predator densities and predator hunting mode, generating landscapes of fear for prey species that can have important effects on prey behaviour and ecosystem dynamics. As widespread apex predators, humans present a significant source of risk for hunted animal populations. Spatiotemporal patterns of risk from hunters can overlap or contrast with patterns of risk from other predators.

View Article and Find Full Text PDF

Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with "winning" combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems.

View Article and Find Full Text PDF