Publications by authors named "Kaitlin S Bohon"

The extent to which the major subdivisions of prefrontal cortex (PFC) can be functionally partitioned is unclear. In approaching the question, it is often assumed that the organization is task dependent. Here we use fMRI to show that PFC can respond in a task-independent way, and we leverage these responses to uncover a stimulus-driven functional organization.

View Article and Find Full Text PDF

The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations.

View Article and Find Full Text PDF

Binocular disparity is a powerful depth cue for object perception. The computations for object vision culminate in inferior temporal cortex (IT), but the functional organization for disparity in IT is unknown. Here we addressed this question by measuring fMRI responses in alert monkeys to stimuli that appeared in front of (near), behind (far), or at the fixation plane.

View Article and Find Full Text PDF

To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units--15% in frontal cortex, 23% in parietal cortex--significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone).

View Article and Find Full Text PDF

Macaque monkeys are a model of human color vision. To facilitate linking physiology in monkeys with psychophysics in humans, we directly compared color-detection thresholds in humans and rhesus monkeys. Colors were defined by an equiluminant plane of cone-opponent color space.

View Article and Find Full Text PDF

Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex.

View Article and Find Full Text PDF