Publications by authors named "Kaitlin R Albanese"

While halide double perovskites AM(I)M(III)X have attracted significant attention, examples involving iodides are rare. We examine the limits of the structural stability of iodide double perovskites, presenting the synthesis and single-crystal structures of CsNaScI and CsNaYI. Bypassing the common expectation that iodides have small band gaps, these compounds display optical gaps of 3.

View Article and Find Full Text PDF

A robust method is described to synthesize degradable copolymers under aqueous miniemulsion conditions using α-lipoic acid as a cheap and scalable building block. Simple formulations of α-lipoic acid (up to 10 mol %), -butyl acrylate, a surfactant, and a costabilizer generate stable micelles in water with particle sizes <200 nm. The ready availability of these starting materials facilitated performing polymerization reactions at large scales (4 L), yielding 600 g of poly(-butyl acrylate--α-lipoic acid) latexes that degrade under reducing conditions (250 kg mol → 20 kg mol).

View Article and Find Full Text PDF

Hybrid halide perovskites AMX (A = ammonium cation, M = divalent cation, X = Cl, Br, I) have been extensively studied but have only previously been reported for the divalent carbon group elements Ge, Sn, and Pb. While they have displayed an impressive range of optoelectronic properties, the instability of Ge and Sn and the toxicity of Pb have stimulated significant interest in finding alternatives to these carbon group-based perovskites. Here, we describe the low-temperature solid-state synthesis of five new hybrid iodide perovskites centered around divalent alkaline earth and lanthanide elements, with the general formula AMI (A = methylammonium, MA; M = Sr, Sm, Eu, and A = formamidinium, FA; M = Sr, Eu).

View Article and Find Full Text PDF

The synthetic utility of heterotelechelic polydimethylsiloxane (PDMS) derivatives is limited due to challenges in preparing materials with high chain-end fidelity. In this study, anionic ring-opening polymerization (AROP) of hexamethylcyclotrisiloxane (D) monomers using a specifically designed silyl hydride (Si-H)-based initiator provides a versatile approach toward a library of heterotelechelic PDMS polymers. A novel initiator, where the Si-H terminal group is connected to a C atom (H-Si-C) and not an O atom (H-Si-O) as in traditional systems, suppresses intermolecular transfer of the Si-H group, leading to heterotelechelic PDMS derivatives with a high degree of control over chain ends.

View Article and Find Full Text PDF

The promise of ABC triblock terpolymers for improving the mechanical properties of thermoplastic elastomers is demonstrated by comparison with symmetric ABA/CBC analogs having similar molecular weights and volume fraction of B and A/C domains. The ABC architecture enhances elasticity (up to 98% recovery over 10 cycles) in part through essentially full chain bridging between discrete hard domains leading to the minimization of mechanically unproductive loops. In addition, the unique phase space of ABC triblocks also enables the fraction of hard-block domains to be higher ( ≈ 0.

View Article and Find Full Text PDF

Here, we present the synthesis and characterization of statistical and block copolymers containing α-lipoic acid (LA) using reversible addition-fragmentation chain-transfer (RAFT) polymerization. LA, a readily available nutritional supplement, undergoes efficient radical ring-opening copolymerization with vinyl monomers in a controlled manner with predictable molecular weights and low molar-mass dispersities. Because lipoic acid diads present in the resulting copolymers include disulfide bonds, these materials efficiently and rapidly degrade when exposed to mild reducing agents such as tris(2-carboxyethyl)phosphine ( = 56 → 3.

View Article and Find Full Text PDF

Halide double perovskites [A M M X ] are an important class of materials that have garnered substantial interest as non-toxic alternatives to conventional lead iodide perovskites for optoelectronic applications. While numerous studies have examined chloride and bromide double perovskites, reports of iodide double perovskites are rare, and their definitive structural characterization has not been reported. Predictive models have aided us here in the synthesis and characterization of five iodide double perovskites of general formula Cs NaLnI (Ln=Ce, Nd, Gd, Tb, Dy).

View Article and Find Full Text PDF

Pressure-sensitive adhesives (PSAs) based on poly(acrylate) chemistry are common in a wide variety of applications, but the absence of backbone degradability causes issues with recycling and sustainability. Here, we report a strategy to create degradable poly(acrylate) PSAs using simple, scalable, and functional 1,2-dithiolanes as drop-in replacements for traditional acrylate comonomers. Our key building block is α-lipoic acid, a natural, biocompatible, and commercially available antioxidant found in various consumer supplements.

View Article and Find Full Text PDF