Publications by authors named "Kaitai Yao"

Blastocyst complementation can potentially generate a rodent model with humanized nasopharyngeal epithelium (NE) that supports sustained Epstein-Barr virus (EBV) infection, enabling comprehensive studies of EBV biology in nasopharyngeal carcinoma. However, during this process, the specific gene knockouts required to establish a developmental niche for NE remain unclear. We performed bioinformatics analyses and generated Foxa1 mutant mice to confirm that Foxa1 disruption could potentially create a developmental niche for NE.

View Article and Find Full Text PDF

Increased vascular permeability facilitates metastasis. Cancer-secreted exosomes are emerging mediators of cancer-host crosstalk. Epstein-Barr virus (EBV), identified as the first human tumor-associated virus, plays a crucial role in metastatic tumors, especially in nasopharyngeal carcinoma (NPC).

View Article and Find Full Text PDF

Cervical cancer is one of the most important cause of cancer-related death and presents a major public health problem in many countries. To search for more novel antitumor agents against cervical cancer, 14 erlotinib-linked 1,2,3-triazole compounds were designed, synthesized, and evaluated for their anti-tumor activity. The compounds were confirmed by H NMR, C NMR, and high-resolution mass spectra (HR MS).

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are emerging at the vanguard of therapy for non-small-cell lung cancer (NSCLC) patients with EGFR-activating mutations. However, the increasing therapeutic resistance caused by novel mutations or activated bypass pathways has impaired their performance. In this study, we link one of the commercial EGFR-TKIs, Erlotinib, to different azide compounds to synthesize a novel class of 1,2,3-triazole ring-containing Erlotinib derivatives.

View Article and Find Full Text PDF
Article Synopsis
  • Lymphatic metastasis is a frequent issue in nasopharyngeal carcinoma (NPC), a type of cancer associated with the Epstein-Barr virus (EBV), though the virus's exact role in metastasis was not well understood.
  • * The study found that EBV promotes lymph node (LN) metastasis in NPC by enhancing lymphangiogenesis through the secretion of VEGF-C, with specific cellular mechanisms involving PHLPP1 and hyperactivity of AKT/HIF1a.
  • * Targeting this EBV/VEGF-C pathway could provide new treatment strategies for NPC patients experiencing lymphatic spread, as evidenced by the analysis of various proteins associated with this process in clinical specimens.*
View Article and Find Full Text PDF

Nitric oxide (NO), an important chemical messenger, serves a dual role in tumor progression. Nitric oxide synthase isoform 1 (NOS1) was observed to be increasingly expressed in various types of cancer, and its expression has been associated with tumor progression. However, the level of NOS1 expression and the associated functions of NOS1 in human ovarian cancer remain undefined.

View Article and Find Full Text PDF

Overexpression of the c-Myc oncogene has been implicated in cancer stem cell - like (CSC) phenotypes and epithelial-to-mesenchymal transition (EMT) in cancer. However, the underlying molecular mechanism by which c-Myc regulates EMT and CSC potential in remains unclear. In the present study, we showed that the expression of c-Myc protein is inversely correlated with microRNA (miR)-200c expression in primary tumor samples from nasopharyngeal cancer (NPC) patients.

View Article and Find Full Text PDF

Background: Casticin, an isoflavone compound extracted from the herb Fructus Viticis, has demonstrated anti-inflammatory and anticancer activities and properties. The aim of this study was to investigate the effects and mechanisms of casticin in nasopharyngeal carcinoma (NPC) cells and to determine its potential for targeted use as a medicine.

Methods: NPC cells were used to perform the experiments.

View Article and Find Full Text PDF

Summary: We present a web server, GenCLiP 3, which is an updated version of GenCLiP 2.0 to enhance analysis of human gene functions and regulatory networks, with the following improvements: i) accurate recognition of molecular interactions with polarity and directionality from the entire PubMed database; ii) support for Boolean search to customize multiple-term search and to quickly retrieve function related genes; iii) strengthened association between gene and keyword by a new scoring method; and iv) daily updates following literature release at PubMed FTP.

Availability: The server is freely available for academic use at: http://ci.

View Article and Find Full Text PDF

With a high incidence and high mortality rate, ovarian cancer presents a challenge for clinical practice. It is thus extremely urgent to investigate new diagnosis and therapy methods for the treatment of ovarian cancer. Ternary copper-based chalcogenide nanomaterials are attractive owing to their near infrared (NIR) response for cancer theranostic fields.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) depend on glycolysis for energy and substrates for biosynthesis. To understand the mechanisms governing the metabolism of hESCs, we investigated the transcriptional regulation of glucose transporter 1 (GLUT1, SLC2A1), a key glycolytic gene to maintain pluripotency. By combining the genome-wide data of binding sites of the core pluripotency factors (SOX2, OCT4, NANOG, denoted SON), chromosomal interaction and histone modification in hESCs, we identified a potential enhancer of the GLUT1 gene in hESCs, denoted GLUT1 enhancer (GE) element.

View Article and Find Full Text PDF

It was brought to the attention of the Editors that there had been an accidental duplication of the western blot images during the preparation of Figs. 1b and c. The authors were notified about the error and have supplied the correct image for Fig.

View Article and Find Full Text PDF

The E3 ligase HERC4 is overexpressed in human breast cancer and its expression levels correlated with the prognosis of breast cancer patients. However, the roles of HERC4 in mammary tumorigenesis remain unclear. Here we demonstrate that the knockdown of HERC4 in human breast cancer cells dramatically suppressed their proliferation, survival, migration, and tumor growth in vivo, while the overexpression of HERC4 promoted their aggressive tumorigenic activities.

View Article and Find Full Text PDF

A nitroxide radical, Tempol (Tempol, TPL), is usually used as an antioxidative agent clinically, whereas the mechanism underlying its pro-oxidative effect has not been thoroughly investigated. The present study investigated the pro-oxidative effect of TPL on the inhibition of cellular proliferation and its role in enhancing the effect of anticancer drug cisplatin (DDP) on the induction of apoptosis in ovarian cancer cells. Cell viability and proliferation were evaluated by MTT assay.

View Article and Find Full Text PDF

Objective: The NOD/SCID/IL2Rγ (NSG) mouse strain is the most widely used immunodeficient strain for xenograft transplantation. However, the existing SCID mutation is a spontaneous mutation of the gene, which leads to leaky T cell developmental block and difficulty in genotyping. It is therefore important to develop a new strain of NSG mice with targeted disruption of and genes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the association of the major histocompatibility complex (MHC) with nasopharyngeal carcinoma (NPC) by focusing on a specific gene, TRIM26, and its genetic variant, rs117565607_A.
  • Researchers conducted targeted sequencing in 40 NPC patients and replicated findings in over 1,000 cases, discovering that the SNP showed a strong link to NPC risk and correlated with lower TRIM26 expression in cancerous tissues.
  • The research also found that the transcription factor Yin Yang 1 (YY1) interacts differently with the alleles of rs117565607, suggesting that TRIM26's downregulation is connected to a reduced immune response in NPC patients.
View Article and Find Full Text PDF

Cancer stem cells (CSCs) are considered to serve a key role in tumor progression, recurrence and metastasis. Tumorsphere culture is the most important method for enriching CSCs and is widely used in basic research and drug screening. However, the traditional suspension cell culture system has several disadvantages, including low efficiency, high cost and difficult procedure, making it difficult to produce tumorspheres on a large scale.

View Article and Find Full Text PDF

The reprogramming factor Krüppel-like factor 4 (Klf4), one of the Yamanaka's reprogramming factors, plays an essential role in reprogramming somatic cells into induced pluripotent stem cells (iPSCs). Klf4 is dysregulated and displays divergent functions in multiple malignancies, but the biological roles of Klf4 in nasopharyngeal carcinoma (NPC) remain unknown. The present study revealed that Klf4 downregulation in a cohort of human NPC biopsies is significantly associated with invasive and metastatic phenotypes of NPC.

View Article and Find Full Text PDF

Relapse and metastasis of nasopharyngeal carcinoma (NPC) are presumably attributed to cancer stem cells (CSCs). In recent years, chimeric antigen receptor (CAR)-modified immune effector cells have been shown to have impressive antitumour efficacy. In this study, we aimed to identify appropriate tumour-associated antigens predominantly expressed on NPC stem cells (NPCSCs) and determine their suitability for CAR-engineered cytokine-induced killer (CIK) cell therapy against NPC.

View Article and Find Full Text PDF

Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive.

View Article and Find Full Text PDF

Autophagy is a cellular survival mechanism that involves the catabolic degradation of damaged proteins and organelles during periods of metabolic stress, and when overly stimulated, commonly contributes to cell death. Nitric oxide (NO), a potent cellular messenger, participates in a complex mechanism which assists in controlling autophagy. However, the mechanism by which endogenous NO formed by distinct isoforms of nitric oxide synthase (NOS) helps to regulate autophagy in cancer cells remains unclear.

View Article and Find Full Text PDF

We herein report that sulforaphane (SFN), a potent anti-cancer and well-tolerated dietary compound, inhibits cancer stem-like cell (CSC) properties and enhances therapeutic efficacy of cisplatin in human non-small cell lung cancer (NSCLC). SFN exerted these functions through upregulation of miR-214, which in turn targets the coding region of c-MYC. This finding was further corroborated by our observations that plasmid or lentiviral vector-mediated expression of 3'UTR-less c-MYC cDNA and cisplatin- or doxorubicin-induced endogenous c-MYC accumulation was similarly suppressed by either SFN or miR-214.

View Article and Find Full Text PDF