Mesenchymal stromal cell (MSC)-derived products, such as trophic factors (MTFs), have anti-inflammatory properties that make them attractive for cell-free treatment. Three-dimensional (3D) culture can enhance these properties, and large-scale expansion using a bioreactor can reduce manufacturing costs. Three lots of MTFs were obtained from umbilical cord MSCs produced by either monolayer culture (Monol MTF) or using a 3D microcarrier in a spinner flask dynamic system (Bioreactor MTF).
View Article and Find Full Text PDFThe regeneration of damaged or lost tissue is considered to be a critical step toward realizing full organ regeneration in modern medicine. Although surgical techniques continue to advance, treatment for missing tissues in irregular wounds remains particularly difficult. With increasing interest in the application of additive manufacturing in tissue engineering, the fabrication of customized scaffolds for the regeneration of missing tissue via three-dimensional (3D) printing has become especially promising.
View Article and Find Full Text PDFThe direct cell control by surface topographic patterns in the micrometer and nanometer range has been proven to be important for the maintenance of tissue structures. This study presents the application of direct laser writing to fabricate micro-gratings on the biodegradable material 1,3-diamino-2-hydroxypropane-co-polyol sebacate (APS). The 193 nm excimer laser is applied to form microgrooves with widths of 2 to 10 μm and depths of 400 to 2884 nm.
View Article and Find Full Text PDFLaser patterning on polymeric materials is considered a green and rapid manufacturing process with low material selection barrier and high adjustability. Unlike microelectromechanical systems (MEMS), it is a highly flexible processing method, especially useful for prototyping. This study focuses on the development of polymer surface modification method using a 193 nm excimer laser system for the design and fabrication of a microfluidic system similar to that of natural vasculatures.
View Article and Find Full Text PDF