Publications by authors named "Kaisa Selesniemi"

Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P) metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials.

View Article and Find Full Text PDF

Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD). Treatment with the NAD metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality.

View Article and Find Full Text PDF

Background: Transforming growth factor beta (TGF-) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-. However, the signal transduction pathway activated by TGF- to induce SM10 progenitor differentiation has yet to be fully investigated.

View Article and Find Full Text PDF

The placenta is an organ that is formed transiently during pregnancy, and appropriate placental development is necessary for fetal survival and growth. Proper differentiation of the labyrinthine layer of the placenta is especially crucial, as it establishes the fetal-maternal interface that is involved in physiological exchange processes. Although previous studies have indicated the importance of inhibitor of differentiation/inhibitor of DNA binding-2 (Id2) helix-loop-helix transcriptional regulator in mediating cell differentiation, the ability of Id2 to regulate differentiation toward the labyrinthine (transport) lineage of the placenta has yet to be determined.

View Article and Find Full Text PDF

Purpose: Investigate the effect of vitrification on in vitro maturation (IVM) and expression of Aurora kinases A, B, and C in germinal vesicle (GV)-stage oocytes.

Methods: GV-stage oocytes from B6D2F1 female mice 7-11 weeks of age were vitrified after collection, thawed, and matured in vitro for 0, 4, 8, and 12 h (hrs). The rate of germinal vesicle breakdown (GVBD), spindle apparatus assembly, and Aurora kinase mRNA and protein expression during IVM was measured.

View Article and Find Full Text PDF

Molecular modeling techniques were applied to the design, synthesis and optimization of a new series of xanthine based adenosine A(2A) receptor antagonists. The optimized lead compound was converted to a PEG derivative and a functional in vitro bioassay used to confirm efficacy. Additionally, the PEGylated version showed enhanced aqueous solubility and was inert to photoisomerization, a known limitation of existing antagonists of this class.

View Article and Find Full Text PDF

Increased meiotic spindle abnormalities and aneuploidy in oocytes of women of advanced maternal ages lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Despite the significance of the problem, strategies to sustain oocyte quality with age have remained elusive. Here we report that adult female mice maintained under 40% caloric restriction (CR) did not exhibit aging-related increases in oocyte aneuploidy, chromosomal misalignment on the metaphase plate, meiotic spindle abnormalities, or mitochondrial dysfunction (aggregation, impaired ATP production), all of which occurred in oocytes of age-matched ad libitum-fed controls.

View Article and Find Full Text PDF

Objective: To determine whether granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), or vascular endothelial growth factor (VEGF) improve the outcome of ovarian grafting.

Design: Experimental animal study.

Setting: Tertiary care hospital, animal facilities.

View Article and Find Full Text PDF

Activation of the aryl hydrocarbon receptor (AHR) by polycyclic aromatic hydrocarbons (PAH), a ubiquitous class of environmental and occupational biohazards, accelerates germ cell depletion in female mice during prenatal and postnatal life. Like AHR, BAX is also functionally required for PAH to kill oocytes. Here, we show that PAH upregulates ovarian expression of not just Bax but a large cassette of proapoptotic genes that function at multiple steps of the cell death signaling pathway.

View Article and Find Full Text PDF

Age-related ovarian failure in women heralds the transition into postmenopausal life, which is characterized by a loss of fertility and increased risk for cardiovascular disease, osteoporosis and cognitive dysfunction. Unfortunately, there are no options available for delaying loss of ovarian function with age in humans. Rodent studies have shown that caloric restriction (CR) can extend female fertile lifespan; however, much of this work initiated CR at weaning, which causes stunted adolescent growth and a delayed onset of sexual maturation.

View Article and Find Full Text PDF

The female reproductive axis is the first major organ system of the body to fail with advancing age. In addition to a permanent cessation of fertile potential, the loss of cyclic ovarian function in humans heralds the onset of menopause, which in turn underlies the emergence of a diverse spectrum of health issues in aging women. Recently, it was reported that bone marrow (BM) transplantation (BMT) into adult female mice conditioned a week earlier with highly cytotoxic drugs rescues ovarian function and fertility.

View Article and Find Full Text PDF

Purpose: Although early menopause frequently occurs in female cancer patients after chemotherapy (CTx), bone marrow (BM) transplantation (BMT) has been linked to an unexplained return of ovarian function and fertility in some survivors. Studies modeling this in mice have shown that BMT generates donor-derived oocytes in CTx-treated recipients. However, a subsequent report claimed that ovulated eggs are not derived from BM and that BM-derived oocytes reported previously are misidentified immune cells.

View Article and Find Full Text PDF

Activated immune cells secrete proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), interferon-gamma (IFN-gamma) and Fas ligand (FasL) and these cytokines have been reported to induce apoptosis in numerous cell types. Apoptotic cell death has been associated with the progression of numerous autoimmune diseases. Proinflammatory cytokines are reportedly involved in apoptosis in the salivary glands of patients with Sjögren's syndrome (SS); an autoimmune disorder characterized by the destruction of salivary and lachrymal glands.

View Article and Find Full Text PDF

Defects in placental development lead to pregnancies at risk for miscarriage and intrauterine growth retardation and are associated with preeclampsia, a leading cause of maternal death and premature birth. In preeclampsia, impaired placental formation has been associated with alterations in a specific trophoblast lineage, the invasive trophoblast cells. In this study, an RT-PCR Trophoblast Gene Expression Profile previously developed by our laboratory was utilized to examine the lineage-specific gene expression of the rat Rcho-1 trophoblast cell line.

View Article and Find Full Text PDF

The mammalian placenta consists of different trophoblast cell types that assist in the variety of functions required for the maintenance of pregnancy. In rodents, labyrinthine trophoblasts of the placenta are especially important, because they are capable of differentiating into fused labyrinthine cells, which form the feto-maternal exchange surface. Even though the molecular signals triggering labyrinthine trophoblast differentiation are poorly understood, transforming growth factor-beta (TGF-beta) has been shown to be present in the placental environment and alter trophoblast development.

View Article and Find Full Text PDF

Trophoblasts provide a model to investigate fundamental mechanisms of stem cell differentiation, but the availability of trophoblast stem cell lines is limited. Here we report the development of an RT-PCR-based lineage-specific profile as a method to identify the lineages of placental trophoblast cells routinely and specifically. This profiling method was used to analyze the mouse SM10 and rat HRP-1 cell lines, isolated from a region of the placental labyrinth, but of previously unidentified lineage.

View Article and Find Full Text PDF