Purpose: The purpose of our study was to examine the long-term outcomes of operated Chiari malformation type 1 (CM1) patients and evaluate whether different duraplasty techniques affected outcome after surgery in Kuopio University Hospital catchment area.
Methods: In this retrospective study, a total of 93 patients were diagnosed with CM1 and underwent posterior fossa decompression surgery with or without duraplasty between 2005 and 2020. All patients' medical records were examined for baseline characteristics, surgical details, and long-term follow-up data after operation.
Introduction: Most microsurgical procedures require the surgeon to use tools to grasp and hold fragile objects in the surgical site. Prior research on grasping in surgery has mostly either been in other surgical techniques or used grasping as an auxiliary metric. We focus on microsurgery and investigate what grasping can tell about microsurgical skill and suturing performance.
View Article and Find Full Text PDFBackground: Idiopathic intracranial hypertension (IIH) is a rare disease of unknown aetiology related possibly to disturbed cerebrospinal fluid (CSF) dynamics and characterised by elevated intracranial pressure (ICP) causing optic nerve atrophy if not timely treated. We studied CSF dynamics of the IIH patients based on the available literature and our well-defined cohort.
Method: A literature review was performed from PubMed between 1980 and 2020 in compliance with the PRISMA guideline.
Purpose: Automated analysis of neuroimaging data is commonly based on magnetic resonance imaging (MRI), but sometimes the availability is limited or a patient might have contradictions to MRI. Therefore, automated analyses of computed tomography (CT) images would be beneficial.
Methods: We developed an automated method to evaluate medial temporal lobe atrophy (MTA), global cortical atrophy (GCA), and the severity of white matter lesions (WMLs) from a CT scan and compared the results to those obtained from MRI in a cohort of 214 subjects gathered from Kuopio and Helsinki University Hospital registers from 2005 - 2016.
Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens.
View Article and Find Full Text PDFProstate cancers (PCs) with loss of the potent tumor suppressors TP53 and RB1 exhibit poor outcomes. TP53 and RB1 also influence cell plasticity and are frequently lost in PCs with neuroendocrine (NE) differentiation. Therapeutic strategies that address these aggressive variant PCs are urgently needed.
View Article and Find Full Text PDFBackground: Cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI) biomarkers of neurodegenerative diseases are relatively sensitive and specific in highly curated research cohorts, but proper validation for clinical use is mostly missing.
Objective: We studied these biomarkers in a novel memory clinic cohort with a variety of different neurodegenerative diseases.
Methods: This study consisted of 191 patients with subjective or objective cognitive impairment who underwent neurological, CSF biomarker (Aβ42, p-tau, and tau) and T1-weighted MRI examinations at Kuopio University Hospital.
Clinical trials of high-dose androgen (HDA) therapy for prostate cancer (PC) have shown promising efficacy but are limited by lack of criteria to identify likely responders. To elucidate factors that govern the growth-repressive effects of HDAs, we applied an unbiased integrative approach using genetic screens and transcriptional profiling of PC cells with or without demonstrated phenotypic sensitivity to androgen-mediated growth repression. Through this comprehensive analysis, we identified genetic events and related signaling networks that determine the response to both HDA and androgen withdrawal.
View Article and Find Full Text PDFBackground: Testosterone is a driver of prostate cancer (PC) growth via ligand-mediated activation of the androgen receptor (AR). Tumors that have escaped systemic androgen deprivation, castration-resistant prostate cancers (CRPC), have measurable intratumoral levels of testosterone, suggesting that a resistance mechanism still depends on androgen-simulated growth. However, AR activation requires an optimal intracellular concentration of androgens, a situation challenged by low circulating testosterone concentrations.
View Article and Find Full Text PDFMetastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.
View Article and Find Full Text PDFLymphatic malformations (LMs) are disfiguring congenital anomalies characterized by aberrant growth of lymphatic vessels. They are broadly categorized histopathologically as macrocystic and microcystic. Although sclerotherapy has shown some success in the treatment of macrocystic malformations, there has been less progress with developing treatment strategies for microcystic malformations.
View Article and Find Full Text PDFCancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure.
View Article and Find Full Text PDFAndrogen receptor (AR) signaling is a distinctive feature of prostate carcinoma (PC) and represents the major therapeutic target for treating metastatic prostate cancer (mPC). Though highly effective, AR antagonism can produce tumors that bypass a functional requirement for AR, often through neuroendocrine (NE) transdifferentiation. Through the molecular assessment of mPCs over two decades, we find a phenotypic shift has occurred in mPC with the emergence of an AR-null NE-null phenotype.
View Article and Find Full Text PDFGermline variation in solute carrier organic anion () genes influences cellular steroid uptake and is associated with prostate cancer outcomes. We hypothesized that, due to its steroidal structure, the CYP17A inhibitor abiraterone may undergo transport by -encoded transporters and that gene variation may influence intracellular abiraterone levels and outcomes. Steroid and abiraterone levels were measured in serum and tissue from 58 men with localized prostate cancer in a clinical trial of LHRH agonist plus abiraterone acetate plus prednisone for 24 weeks prior to prostatectomy.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
March 2017
Background: Epidemiologic and in vitro studies suggest that SLCO-encoded organic anion transporting polypeptide (OATP) transporters influence the response of prostate cancer (PCa) to androgen deprivation by altering intratumor androgens. We have previously shown that castration-resistant metastases express multiple SLCO transporters at significantly higher levels than primary PCa, suggesting that OATP-mediated steroid transport is biologically relevant in advanced disease. However, whether OATP-mediated steroid transport can actually modify prostate tumor androgen levels in vivo has never been demonstrated.
View Article and Find Full Text PDFAs one of the most frequently diagnosed cancers in males, the development and progression of prostate cancer remains an open area of research. The role of lncRNAs in prostate cancer is an emerging field of study. In this review, we summarize what is currently known about lncRNAs in prostate cancer while focusing on a few key lncRNAs.
View Article and Find Full Text PDFObjective: Facial attractiveness is an important factor in our social interactions. It is still not entirely clear which factors influence the attractiveness of a face and facial asymmetry appears to play a certain role. The aim of the present study was to assess the association between facial attractiveness and regional facial asymmetries evaluated on three-dimensional (3D) images.
View Article and Find Full Text PDFEpoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium.
View Article and Find Full Text PDFEpoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases.
View Article and Find Full Text PDFCancer Metastasis Rev
December 2010
Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively.
View Article and Find Full Text PDFThe chemotherapeutic agent etoposide is a topoisomerase II inhibitor widely used for cancer therapy. Low-dose oral etoposide, administered at close regular intervals, has potent anti-tumor activity in patients who are refractory to intravenous etoposide; however, the mechanism remains unclear. Since endothelial cells may be more sensitive than tumor cells to chemotherapy agents, we determined the effects of etoposide alone and in combination with oral cyclooxygenase-2 inhibitors and peroxisome-proliferator activated receptor γ ligands on angiogenesis and tumor growth in xenograft tumor models.
View Article and Find Full Text PDFBackground: Poly-N-acetyl glucosamine (pGlcNAc) nanofiber-based materials, produced by a marine microalga, have been characterized as effective hemostatic agents. In this study, we hypothesized that a pGlcNAc fiber patch may enhance wound healing in the db/db mouse.
Methods: pGlcNAc patches were applied on 1-cm, full-thickness, skin wounds in the db/db mouse model.
Angiogenesis and inflammation are central processes through which the tumor microenvironment influences tumor growth. We have demonstrated recently that peroxisome proliferator-activated receptor (PPAR)alpha deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of thrombospondin (TSP)-1 and prevents tumor growth. Hence, we speculated that pharmacologic activation of PPARalpha would promote tumor growth.
View Article and Find Full Text PDF