Publications by authors named "Kaio Vitzel"

Purpose: Resistance exercise training (RET) effectively increases skeletal muscle mass and strength in healthy postmenopausal women. However, its effects on these parameters in postmenopausal breast cancer survivors are controversial or limited. Therefore, the aim of this study was to compare the effects of a 12-week progressive whole-body RET program on skeletal muscle mass, strength, and physical performance in healthy postmenopausal women versus postmenopausal women who survived breast cancer.

View Article and Find Full Text PDF

Aim: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles.

Methods: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.

View Article and Find Full Text PDF

Autophagy plays a vital role in cell homeostasis by eliminating nonfunctional components and promoting cell survival. Here, we examined the levels of autophagy signaling proteins after 7 days of overload hypertrophy in the extensor digitorum longus (EDL) and soleus muscles of control and diabetic rats. We compared control and 3-day streptozotocin-induced diabetic rats, an experimental model for type 1 diabetes mellitus (T1DM).

View Article and Find Full Text PDF
Article Synopsis
  • A study evaluated how sex, age, and duration of mechanical ventilation affected muscle mass, strength, and mobility in critically ill patients infected with SARS-CoV-2 in an ICU setting in Chile.* -
  • It included 132 participants, demonstrating significant decreases in quadriceps muscle thickness, with notable declines in specific muscle areas during their ICU stay.* -
  • Results showed that older patients and those on mechanical ventilation for more than 10 days experienced greater muscle loss and had lower muscle strength and mobility upon discharge.*
View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses.

View Article and Find Full Text PDF

Several studies have demonstrated that a maternal low-protein diet induces long-term metabolic disorders, but the involved mechanisms are unclear. This study investigated the molecular effects of a low-protein diet during pregnancy and lactation on glucose and protein metabolism in soleus muscle isolated from adult male rats. Female rats were fed either a normal protein diet or low-protein diet during gestation and lactation.

View Article and Find Full Text PDF

Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.

View Article and Find Full Text PDF

The ergogenic effect of caffeine is well established, although no investigations providing a high carbohydrate feeding strategy (pre-exercise meal=2 g/kg BM) co-ingested with caffeine exist for soccer. This investigation examines the effect of caffeine in addition to a pre-exercise carbohydrate meal and drink mid-way through a soccer simulation. Eight recreational soccer players completed an 85-minute soccer simulation followed by an exercise capacity test (Yo-yo Intermittent Endurance test level 2) on two occasions.

View Article and Find Full Text PDF

L-Glutamine (L-Gln) supplementation has been pointed out as an anticatabolic intervention, but its effects on protein synthesis and degradation signaling in skeketal muscle are still poorly known. The effects of L-Gln pretreatment (1 g kg day body weight for 10 days) on muscle fiber cross-sectional area (CSA), amino acid composition (measured by LC-MS/MS) and protein synthesis (Akt-mTOR) and degradation (ubiquitin ligases) signaling in soleus and extensor digitorum longus (EDL) muscles in 24-h-fasted mice were investigated. The fiber CSA of EDL muscle was not different between the L-Gln-fasted and L-Gln-fed groups.

View Article and Find Full Text PDF

Due to the difficulty of performing research protocols that reproduce human skeletal muscle disuse conditions, an experimental animal model of "hindlimb suspension" (or hindlimb unloading) was developed. This method was created in the 1970s and utilizes rats and mice to mimic space flight and bed rest in humans. It provides an alternative to investigate mechanisms associated with skeletal muscle mass loss and interventions designed to attenuate atrophy induced by hindlimb unloading.

View Article and Find Full Text PDF

Background: Post-activation potentiation (PAP) is the phenomenon by which muscular performance is enhanced in response to a conditioning stimulus. PAP has typically been evidenced via improved counter movement jump (CMJ) performance. This study examined the effects of PAP, with and without prior caffeine ingestion, on CMJ performance.

View Article and Find Full Text PDF

White adipose tissue (WAT) regulates energy homeostasis by releasing adipokines and modulating cell maintenance. Nutrient excess affects adipocyte hypertrophy directly in WAT by increasing excessively the activity of autophagy systems, generating proinflammatory markers and increasing infiltration of macrophages, causing metabolic diseases such as obesity and diabetes. Evidences suggest that cathepsin B (CTSB), a papain-like cysteine peptidase protein, can modulate autophagy processes in adipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Skeletal muscle electrical stimulation aids in recovery and enhancement of muscle function for both healthy and pathological conditions.
  • It serves as a research tool to evaluate contractile properties in muscle tissues, using both in vitro (cell cultures) and in vivo (human or animal models) methods.
  • This chapter details the use of electrical stimulation on the sciatic nerve to study murine hind limb muscles, assessing factors like muscle force and fatigue resistance, and modeling muscle injury and adaptation.
View Article and Find Full Text PDF

Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats.

View Article and Find Full Text PDF

The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle.

View Article and Find Full Text PDF

Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial.

View Article and Find Full Text PDF

What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well-established model of muscle regeneration after severe laceration.

View Article and Find Full Text PDF

Oxidative stress aggravates several long-term complications in diabetes mellitus. We evaluated the effectiveness of the oral administration of antioxidants (vitamins E and C, 40 and 100 mg/kg b.w.

View Article and Find Full Text PDF

The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.

View Article and Find Full Text PDF

The use of Western blot analysis is of great importance in research, and the measurement of housekeeping proteins is commonly used for loading controls. However, Ponceau S staining has been shown to be an alternative to analysis of housekeeping protein levels as loading controls in some conditions. In the current study, housekeeping protein levels were measured in skeletal muscle hypertrophy and streptozotocin-induced diabetes experimental models.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days.

View Article and Find Full Text PDF

This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period.

View Article and Find Full Text PDF