Publications by authors named "Kaio Kitazato"

Microglia are the primary cellular source of type I interferons (I-IFNs) in the brain upon neurotropic virus infection. Although the I-IFN-based antiviral innate immune response is crucial for eliminating viruses, overproduction led to immune disorders. Therefore, the relatively long-lasting I-IFNs must be precisely controlled, but the regulatory mechanism for the innate antiviral response in microglia remains largely unknown.

View Article and Find Full Text PDF

Posttranslational modification (PTM) and regulation of protein stability are crucial to various biological processes. Histone deacetylase 6 (HDAC6), a unique histone deacetylase with two functional catalytic domains (DD1 and DD2) and a ZnF-UBP domain (ubiquitin binding domain, BUZ), regulates a number of biological processes, including gene expression, cell motility, immune response, and the degradation of misfolded proteins. In addition to the deacetylation of histones, other nonhistone proteins have been identified as substrates for HDAC6.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial disease triggered by environmental factors in combination with genetic predisposition. Infectious agents, in particular herpes simplex virus type 1 (HSV-1), are gradually being recognised as important factors affecting the development of AD. However, the mechanism linking HSV-1 and AD remains unknown.

View Article and Find Full Text PDF

Microglia, as brain-resident macrophages, are the first line of defense against brain invading pathogens. Further, their dysfunction has been recognized to be closely associated with mounting CNS diseases. Of note, chronic HSV-1 infection leads to the persistent activation of microglia, which elicit a comprehensive response by generating certain factors with neurotoxic and neuroprotective effects.

View Article and Find Full Text PDF

Aberrant function of cell cycle regulators results in uncontrolled cell proliferation, making them attractive therapeutic targets in cancer treatment. Indeed, survival of many cancers exclusively relies on these proteins, and several specific inhibitors are in clinical use. Although the ubiquitin-proteasome system is responsible for the periodic quality control of cell cycle proteins during cell cycle progression, increasing evidence clearly demonstrates the intimate interaction between cell cycle regulation and selective autophagy, important homeostasis maintenance machinery.

View Article and Find Full Text PDF

Background: Numerous host cellular factors are exploited by viruses to facilitate infection. Our previous studies and those of others have shown heat-shock protein 90 (Hsp90), a cellular molecular chaperone, is involved in herpes simplex virus (HSV)-1 infection. However, the function of the dominant Hsp90 isoform and the relationship between Hsp90 and HSV-1 α genes remain unclear.

View Article and Find Full Text PDF

The importance of the gut microbiome in central nervous system (CNS) diseases has long been recognized; however, research into this connection is limited, in part, owing to a lack of convincing mechanisms because the brain is a distant target of the gut. Previous studies on the brain revealed that most of the CNS diseases affected by the gut microbiome are closely associated with microglial dysfunction. Microglia, the major CNS-resident macrophages, are crucial for the immune response of the CNS against infection and injury, as well as for brain development and function.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) encodes various microRNAs (miRNAs), whose targets are largely unknown. miR-H1 is the first discovered HSV-1 miRNA and is expressed predominantly in productive infection. Here we show that ubiquitin protein ligase E3 component n-recognin 1 (Ubr1) is a cellular target of miR-H1.

View Article and Find Full Text PDF

The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle.

View Article and Find Full Text PDF

Histone deacetylase 6 (HDAC6) is a unique cytoplasmic deacetylase that regulates various important biological processes by preventing protein aggregation and deacetylating different non-histone substrates including tubulin, heat shock protein 90, cortactin, retinoic acid inducible gene I and β-catenin. Growing evidence has indicated a dual role for HDAC6 in viral infection and pathogenesis: HDAC6 may represent a host defence mechanism against viral infection by modulating microtubule acetylation, triggering antiviral immune response and stimulating protective autophagy, or it may be hijacked by the virus to enhance proinflammatory response. In this review, we will highlight current data illustrating the complexity and importance of HDAC6 in viral pathogenesis.

View Article and Find Full Text PDF

Autophagy, an essential catabolic pathway of degrading cellular components within the lysosome, has been found to benefit the growth and therapeutic resistance of cancer cells. In this study, we investigated the role of autophagy in the radio-sensitivity of cancer stem cells. By separating CD44+/CD133+ cancer stem cells from parental HCT8 human colorectal cancer cells, we found a significantly higher level of autophagy in the CD44+/CD133+ cells than in the parental cells.

View Article and Find Full Text PDF

Influenza A virus (IAV) infection triggers autophagosome formation, but inhibits the fusion of autophagosomes with lysosomes. However, the role of autophagy in IAV replication is still largely unclarified. In this study, we aim to reveal the role of autophagy in IAV replication and the molecular mechanisms underlying the regulation.

View Article and Find Full Text PDF

Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.

View Article and Find Full Text PDF

Influenza A virus (IAV) has been raising public health and safety concerns worldwide. Cyanovirin-N (CVN) is a prominent anti-IAV candidate, but both cytotoxicity and immunogenicity have hindered the development of this protein as a viable therapy. In this article, linker-CVN (LCVN) with a flexible and hydrophilic polypeptide at the N-terminus was efficiently produced from the cytoplasm of Escherichia coli at a >15-l scale.

View Article and Find Full Text PDF

Influenza A virus (IAV) assembly and budding on host cell surface plasma membrane requires actin cytoskeleton reorganization. The underlying molecular mechanism involving actin reorganization remains unclarified. In this study, we found that the natural antiviral compound petagalloyl glucose (PGG) inhibits F-actin reorganization in the host cell membrane during the late stage of IAV infection, which are associated with the suppression of total cofilin-1 level and its phosphorylation.

View Article and Find Full Text PDF

Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that regulates cellular homeostatic processes. Following ligand binding, EGFR activates different downstream signalling cascades that promote cell survival, proliferation, motility, and angiogenesis and induces F-actin-dependent EGFR endocytosis, which relocalises the activated receptors for degradation or recycling. The responses that are induced by ligand binding to EGFR, including cell signalling activation, protein kinase phosphorylation and cytoskeletal network rearrangement, resemble those induced by virus infection.

View Article and Find Full Text PDF

Hemagglutinin (HA) is essential for Influenza A virus infection, but its diversity of subtypes presents an obstacle to developing broad-spectrum HA inhibitors. In this study, we investigated the molecular mechanisms by which poly-galloyl glucose (pGG) analogs inhibit influenza hemagglutinin (HA) in vitro and in silico. We found that (1) star-shaped pGG analogs exhibit HA-inhibition activity by interacting with the conserved structural elements of the receptor binding domain (RBD); (2) HA inhibition depends on the number of galloyl substituents in a pGG analog; the best number is four; and when PGG binds with two HA trimers at their conserved receptor binding domains (loop 130, loop 220, and 190-α-helix), PGG acts as a molecular glue by aggregating viral particles so as to prevent viral entry into host cells (this was revealed via an in silico simulation on the binding of penta-galloyl-glucose (PGG) with HA).

View Article and Find Full Text PDF

Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN.

View Article and Find Full Text PDF

Unlabelled: Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear.

View Article and Find Full Text PDF

Autophagy plays a crucial role in a wide array of physiological processes. To uncover the complex regulatory networks and mechanisms underlying basal autophagy, we performed a quantitative proteomics analysis of autophagy-deficient mouse embryonic fibroblast cells (MEFs) using iTRAQ labeling coupled with on-line 2D LC/MS/MS. We quantified a total of 1234 proteins and identified 114 proteins that were significantly altered (90% confidence interval), including 48 up-regulated proteins and 66 down-regulated proteins.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection.

View Article and Find Full Text PDF