Publications by authors named "Kaindl R"

The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams.

View Article and Find Full Text PDF

Ultrafast experiments unveil control of magnetization with atomic rotations.

View Article and Find Full Text PDF

The research was focused on alternative treatment techniques, separating immediate and long-term reconstruction stages. The work involved development of ceramic materials dedicated to reconstruction of the temporomandibular joint area. They were based on alumina (aluminum oxide) and characterized by varying porosities.

View Article and Find Full Text PDF

The formation of a charge density wave state is characterized by an order parameter. The way it is established provides unique information on both the role that correlation plays in driving the charge density wave formation and the mechanism behind its formation. Here we use time and angle resolved photoelectron spectroscopy to optically perturb the charge-density phase in 1T-TiSe[Formula: see text] and follow the recovery of its order parameter as a function of energy, momentum and excitation density.

View Article and Find Full Text PDF

Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBaCuO after the quench of superconductivity by an infrared laser pulse.

View Article and Find Full Text PDF

Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface-oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer- or foil-type substrates.

View Article and Find Full Text PDF

The electronic structure and dynamics of 2D transition metal dichalcogenide (TMD) monolayers provide important underpinnings both for understanding the many-body physics of electronic quasi-particles and for applications in advanced optoelectronic devices. However, extensive experimental investigations of semiconducting monolayer TMDs have yielded inconsistent results for a key parameter, the quasi-particle band gap (QBG), even for measurements carried out on the same layer and substrate combination. Here, we employ sensitive time- and angle-resolved photoelectron spectroscopy (trARPES) for a high-quality large-area MoS monolayer to capture its momentum-resolved equilibrium and excited-state electronic structure in the weak-excitation limit.

View Article and Find Full Text PDF

We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability.

View Article and Find Full Text PDF

Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity.

View Article and Find Full Text PDF

We employ atomically resolved and element-specific scanning transmission electron microscopy (STEM) to visualize in situ and at the atomic scale the crystallization and restructuring processes of two-dimensional (2D) molybdenum disulfide (MoS) films. To this end, we deposit a model heterostructure of thin amorphous MoS films onto freestanding graphene membranes used as high-resolution STEM supports. Notably, during STEM imaging the energy input from the scanning electron beam leads to beam-induced crystallization and restructuring of the amorphous MoS into crystalline MoS domains, thereby emulating widely used elevated temperature MoS synthesis and processing conditions.

View Article and Find Full Text PDF

Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide.

View Article and Find Full Text PDF

The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking.

View Article and Find Full Text PDF

Molybdenum disulphide (MoS) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS films by magnetron sputtering.

View Article and Find Full Text PDF

The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state.

View Article and Find Full Text PDF

Single crystals as well as polycrystalline samples of GaNbO4, Ga(Ta,Nb)O4, and GaTaO4 were grown from the melt and by solid-state reactions, respectively, at various temperatures between 1698 and 1983 K. The chemical composition of the crystals was confirmed by wavelength-dispersive electron microprobe analysis, and the crystal structures were determined by single-crystal X-ray diffraction. In addition, a high-P-T synthesis of GaNbO4 was performed at a pressure of 2 GPa and a temperature of 1273 K.

View Article and Find Full Text PDF

Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.

View Article and Find Full Text PDF

Colorless single crystals, as well as polycrystalline samples of TiTa2O7 and TiNb2O7, were grown directly from the melt and prepared by solid-state reactions, respectively, at various temperatures between 1598 K and 1983 K. The chemical composition of the crystals was confirmed by wavelength-dispersive X-ray spectroscopy, and the crystal structures were determined using single-crystal X-ray diffraction. Structural investigations of the isostructural compounds resulted in the following basic crystallographic data: monoclinic symmetry, space group I2/m (No.

View Article and Find Full Text PDF

Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas.

View Article and Find Full Text PDF

An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy.

View Article and Find Full Text PDF

The crystal structures of synthetic hexagonal and orthorhombic Fe-cordierite polymorphs with the space groups 6/ and were refined from single-crystal ray diffraction data to  = 3.14 % and  = 4.48 %.

View Article and Find Full Text PDF

Self-organized electronically ordered phases are a recurring feature in correlated materials, resulting in, for example, fluctuating charge stripes whose role in high-TC superconductivity is under debate. However, the relevant cause-effect relations between real-space charge correlations and low-energy excitations remain hidden in time-averaged studies. Here we reveal ultrafast charge localization and lattice vibrational coupling as dynamic precursors of stripe formation in the model compound La(1.

View Article and Find Full Text PDF

The two oxoborates β-ZnB4O7 and β-CaB4O7 were synthesized and investigated by FTIR- and Raman spectroscopy and ab initio quantum chemical calculations. Maximum and mean deviations between experimentally determined bands and calculated modes ranged between 15-36 cm(-1) and 5-7 cm(-1), respectively, allowing band assignments to vibrational modes in most cases. The complex network structures with tetrahedral BO4 and planar OB3 groups are mirrored by the spectra and numerous vibrational modes, not assignable by standard borates classification schemes.

View Article and Find Full Text PDF

We investigate the order parameter dynamics of the stripe-ordered nickelate, La(1.75)Sr(0.25)NiO(4), using time-resolved resonant x-ray diffraction.

View Article and Find Full Text PDF

Large whiskers of a new KAlO polymorph with mullite-type structure were synthesized. The chemical composition of the crystals was confirmed by energy-dispersive X-ray spectroscopy, and the structure was determined using single-crystal X-ray diffraction. Nanosized twin domains and one-dimensional diffuse scattering were observed utilizing transmission electron microscopy.

View Article and Find Full Text PDF

New nitridosilicates Ca(3)Sm(3)[Si(9)N(17)] and Ca(3)Yb(3)[Si(9)N(17)] were synthesized from the reactions of the pure metals (calcium and samarium/ytterbium) with silicon diimide "Si(NH)(2) " in a radio-frequency (rf) furnace at temperatures of up to 1650 °C. These isotypic compounds crystallize in the cubic space group P4(-)3m (no. 215) with lattice parameters a=739.

View Article and Find Full Text PDF