Motivation: Accurate identification of proteins interacted with drugs helps reduce the time and cost of drug development. Most of previous methods focused on integrating multisource data about drugs and proteins for predicting drug-target interactions (DTIs). There are both similarity connection and interaction connection between two drugs, and these connections reflect their relationships from different perspectives.
View Article and Find Full Text PDFMotivation: Effective computational methods to predict drug-protein interactions (DPIs) are vital for drug discovery in reducing the time and cost of drug development. Recent DPI prediction methods mainly exploit graph data composed of multiple kinds of connections among drugs and proteins. Each node in the graph usually has topological structures with multiple scales formed by its first-order neighbors and multi-order neighbors.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
April 2022
Identification of interactions between drugs and target proteins plays a critical role not only in drug discovery but also in drug repositioning. Deep integration of inter-connections and intra-similarities between heterogeneous multi-source data about drugs and targets, however, is a challenging issue. We propose a drug-target interaction (DTI) prediction model by learning from drug and protein related multi-scale attributes and global topology formed by heterogeneous connections.
View Article and Find Full Text PDF