Access to a precise genetic diagnosis (PrGD) in critically ill newborns is limited and inequitable because the complex inclusion criteria used to prioritize testing eligibility omit many patients at high risk for a genetic condition. SeqFirst-neo is a program to test whether a genotype-driven workflow using simple, broad exclusion criteria to assess eligibility for rapid genome sequencing (rGS) increases access to a PrGD in critically ill newborns. All 408 newborns admitted to a neonatal intensive care unit between January 2021 and February 2022 were assessed, and of 240 eligible infants, 126 were offered rGS (i.
View Article and Find Full Text PDFBackground: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ∼1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity.
Objectives: The authors report work by the Clinical Genome Resource Hereditary Cardiovascular Disease (HCVD) Gene Curation Expert Panel (GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes.
Background: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ~1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. Here we report work by the ClinGen Hereditary Cardiovascular Disorders Gene Curation Expert Panel (HCVD-GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes.
View Article and Find Full Text PDFContraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as , , and that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes such as , , and that encode parts of the skeletal muscle sarcomere cause muscle diseases affecting skeletal muscle, such as distal arthrogryposis (DA) syndromes and skeletal myopathies.
View Article and Find Full Text PDFContraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as , , and that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes , , and , that encode parts of the skeletal muscle sarcomere, cause muscle diseases affecting skeletal muscle, such as the distal arthrogryposis (DA) syndromes and skeletal myopathies.
View Article and Find Full Text PDFHuman induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.
View Article and Find Full Text PDFObjective: To evaluate the prevalence of Noonan spectrum disorders (NSD) in a pediatric population with valvar pulmonary stenosis (vPS) and identify the clinical characteristics that differentiate those with NSD from those without NSD.
Design: A retrospective chart review of 204 patients diagnosed with vPS between 9/1/2012 and 12/1/2016 at a pediatric medical center was performed. The quantitative features of vPS, genetic diagnosis information, and phenotypic characteristics of Noonan syndrome were collected.