Importance: Postoperative pulmonary complications and cardiovascular complications are major causes of morbidity, mortality, and resource utilization in cardiac surgery patients.
Objectives: To investigate the effects of airway pressure release ventilation (APRV) on respiration and hemodynamics in post cardiac surgery patients.
Main Outcomes And Measures: A single-center randomized control trial was performed.
Patient-ventilator asynchronies (PVAs) are common in mechanically ventilated patients. However, the epidemiology of PVAs and its impact on clinical outcome remains controversial. The current study aims to evaluate the epidemiology and risk factors of PVAs and their impact on clinical outcomes using big data analytics.
View Article and Find Full Text PDFBackground And Objective: Mismatch between invasive mechanical ventilation and the requirements of patients results in patient-ventilator asynchrony (PVA), which is associated with a series of adverse clinical outcomes. Although the efficiency of the available approaches for automatically detecting various types of PVA from the ventilator waveforms is unsatisfactory, the feasibility of powerful deep learning approaches in addressing this problem has not been investigated.
Methods: We propose a 2-layer long short-term memory (LSTM) network to detect two most frequently encountered types of PVA, namely, double triggering (DT) and ineffective inspiratory effort during expiration (IEE), on two datasets.
The analytical expression for the propagation of guided optical vortices through free space is derived and used to study the dynamic evolution of guided optical vortices after passing through the free space, and the dependence of guided optical vortices on the control parameters where the effect of propagation distance is stressed. It is shown that the motion, pair creation and annihilation of guided optical vortices may take place. In particular, the creation and annihilation of a pair of guided optical vortices do not take place by varying fiber length.
View Article and Find Full Text PDFWe demonstrate that nanosecond pulses are generated directly from an all-fiber mode-locked ytterbium-doped fiber laser. A pair of Chirped Fiber Gratings (CFGs) with different sign of dispersion is employed for intracavity dispersion management. Self-starting stabilized mode-locking operation is achieved by nonlinear polarization evolution (NPE).
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2005
By introducing a new kind of Green function, we formulate an improved diffraction integral, which can be used to numerically evaluate the diffracted field of a microlens of plane-convex shape. Analytical expressions for the diffracted field of microlens are derived for the case where the curvature radius of the convex surface is larger than the dimension of the microlens aperture. The validity of the results and the diffracted field of the microlens are illustrated with numerical examples.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2005
On the basis of the vectorial Rayleigh-Sommerfeld formulas and by means of the relation between Hermite and Laguerre polynomials, the analytical expressions for the propagation of the Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams beyond the paraxial approximation are derived, with the corresponding far-field propagation expressions and that for the Gaussian beams being given as special cases of the results. Some detailed comparisons of our results with the expansion series and paraxial expressions are made, which show the advantages of our results over the expansion series. With the results obtained, some typical intensity patterns of nonparaxial HG and LG beams are shown.
View Article and Find Full Text PDFThe polarization properties of vectorial coherent nonparaxial Gaussian beams are studied. It is shown that, when the source of a nonparaxial Gaussian beam is completely polarized, the degree of polarization of the propagation field maintains a constant value of 1. However, when the source is completely unpolarized, the degree of polarization does not maintain a constant value of 0.
View Article and Find Full Text PDFGeneralized vectorial Rayleigh-Sommerfeld diffraction integrals are developed for the cross-spectral-density matrices of spatially partially coherent beams. Using the Gaussian Schell-model (GSM) beam as an example, we derive the expressions for the propagation of cross-spectral-density matrices and intensity of partially coherent vectorial nonparaxial beams, and the corresponding far-field asymptotic forms, beyond the paraxial approximation. The propagation of the vectorial nonparaxial GSM beams are evaluated and analyzed.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2004
Based on the vectorial Rayleigh-Sommerfeld diffraction integrals, an analytical propagation equation of vectorial, nonparaxial, elliptical Gaussian beams through a rectangular aperture is derived. Unlike in previous work, the aperture effect and nonrotational symmetry of the beam and aperture are considered in our theoretical model. The results of the far-field and paraxial approximation for the apertured case are treated as special cases of our general expression.
View Article and Find Full Text PDFThe concept of a partially coherent nonparaxial beam is proposed. A closed-form expression for the propagation of nonparaxial Gaussian Schell model (GSM) beams in free space is derived and applied to study the propagation properties of nonparaxial GSM beams. It is shown that for partially coherent nonparaxial beams a new parameter f(sigma) has to be introduced, which together with the parameter f, determines the beam nonparaxiality.
View Article and Find Full Text PDFBased on the vectorial Rayleigh diffraction integral, the nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture is studied. The far-field and paraxial cases are treated as special cases of our general result. It is shown that for the apertured case the f parameter still plays an important role in determining the nonparaxiality of vectorial diffracted Gaussian beams, but both the f parameter and truncation affect the beam evolution behavior.
View Article and Find Full Text PDFOn the basis of angular spectrum representation and the stationary-phase method, a far-field expression for nonparaxial Gaussian beams diffracted at a circular aperture is derived, which permits us to study the far-field nonparaxial properties of apertured Gaussian beams both analytically and numerically. It is shown that for the apertured case, the f -parameter and the truncation parameter affect the beam's far-field properties. The f -parameter plays the more important role in determining the beam nonparaxiality than does the truncation parameter, whereas the truncation parameter additionally influences the beam diffraction.
View Article and Find Full Text PDF