Publications by authors named "Kailang Wu"

By the end of 2019, the COVID-19 pandemic, resulting from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had diffused widely across the globe, with 770 million infected individuals and over 7 million deaths reported. In addition to its high infectivity and pathogenicity and its rapid mutation rate, the unique capacity of SARS-CoV-2 to circumvent the immune system has also contributed to the widespread nature of this pandemic. SARS-CoV-2 elicits the onset of innate immune system activation and initiates antiviral responses once it has infected the host.

View Article and Find Full Text PDF

Aberrant activity of NLRP3 has been shown associations with severe diseases. Palmitoylation is a kind of protein post-translational modification, which has been shown to regulate cancer development and the innate immune system. Here, we showed that NLRP3 is palmitoylated at Cys419 and that palmitoyltransferase ZDHHC17 is the predominant enzyme that mediates NLRP3 palmitoylation and promotes NLRP3 activation by interacting with NLRP3 and facilitating NIMA-related kinase 7 (NEK7)-NLRP3 interactions.

View Article and Find Full Text PDF

Recent observational studies revealed an association between gut microbiota and aging, but whether gut microbiota are causally associated with the aging process remains unknown. We used a two-sample Mendelian randomization approach to investigate the causal association between gut microbiota and biological age acceleration using the largest available gut microbiota GWAS summary data from the MiBioGen consortium and GWAS data on biological age acceleration. We further conducted sensitivity analysis using MR-PRESSO, MR-Egger regression, Cochran Q test, and reverse MR analysis.

View Article and Find Full Text PDF

Background: The Systemic Immune-Inflammation Index (SII) is a quantitative measurement of the systemic immune-inflammatory response in the human body. The SII has been shown to have prognostic value in various clinical settings, including critical illness, sepsis, and cancer. Its role in chronic obstructive pulmonary disease (COPD) remains unclear and requires further investigation.

View Article and Find Full Text PDF

A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease.

View Article and Find Full Text PDF

Many studies have shown that β-glucan induces a trained immune phenotype in innate immune cells to defend against bacterial and fungal infections. The specific mechanism involves cellular metabolism and epigenetic reprogramming. However, it is unclear whether β-glucan plays a role in antiviral infection.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV) vaccination is a key initiative to promote the WHO global strategy to accelerate the elimination of cervical cancer, and this study aimed to investigate the current status of HPV infection and genotypic characteristics of the population under the impact of age-expansion of nine-valent HPV vaccination policy in China.

Methods: The clinical data of 60,685 subjects who were admitted in the Renmin Hospital of Wuhan University and underwent HPV genotyping from January 2017 to October 2022 were retrospectively analyzed.

Results: The total number of positive HPV genotyping in the included population was 10,303, with a positivity rate of 17.

View Article and Find Full Text PDF

Previous researches have suggested the potential correlation between the development of breast cancer and the concentration of miRNA-21 in serum. Theoretically the doping of multivalent metal ions in WS could bring higher electron transfer capacity, but this hasn't been proven. To fill this research gap, through one-pot method we prepared seven nanocomposite structures modified with different metal ions (Co, Ni, Mn, Zn, Fe, Cr, La).

View Article and Find Full Text PDF

In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality.

View Article and Find Full Text PDF

Endosomal sorting complex required for transport (ESCRT) is essential in the functional operation of endosomal transport in envelopment and budding of enveloped RNA viruses. However, in nonenveloped RNA viruses such as enteroviruses of the Picornaviridae family, the precise function of ESCRT pathway in viral replication remains elusive. Here, we initially evaluated that the ESCRT pathway is important for viral replication upon enterovirus 71 (EV71) infection.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a mosquito-borne flavivirus, and its infection may cause severe neurodegenerative diseases. The outbreak of ZIKV in 2015 in South America has caused severe human congenital and neurologic disorders. Thus, it is vitally important to determine the inner mechanism of ZIKV infection.

View Article and Find Full Text PDF

Cytokine storm induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a major pathological feature of Coronavirus Disease 2019 (COVID-19) and a crucial determinant in COVID-19 prognosis. Understanding the mechanism underlying the SARS-CoV-2-induced cytokine storm is critical for COVID-19 control. Here, we identify that SARS-CoV-2 ORF3a and host hypoxia-inducible factor-1α (HIF-1α) play key roles in the virus infection and pro-inflammatory responses.

View Article and Find Full Text PDF

The activation of the NLRP3 inflammasome plays a crucial role in the innate immune response. During cell division, NLRP3 inflammasome activation must be strictly controlled. In this study, we discover that the anaphase-promoting complex subunit 10 (APC10), a substrate recognition protein of the anaphase-promoting complex/cyclosome (APC/C), is a critical mediator of NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection can cause severe neurological disorders, including Guillain-Barre syndrome and meningoencephalitis in adults and microcephaly in fetuses. Here, we reveal that laminin receptor 1 (LAMR1) is a novel host resistance factor against ZIKV infection. Mechanistically, we found that LAMR1 binds to ZIKV envelope (E) protein its intracellular region and attenuates E protein ubiquitination through recruiting the deubiquitinase eukaryotic translation initiation factor 3 subunit 5 (EIF3S5).

View Article and Find Full Text PDF

Zika virus (ZIKV) is a kind of flavivirus emerged in French Polynesia and Brazil, and has led to a worldwide public health concern since 2016. ZIKV infection causes various neurological conditions, which are associated with fetus brain development or peripheral and central nervous systems (PNS/CNS) functional problems. To date, no vaccine or any specific antiviral therapy against ZIKV infection are available.

View Article and Find Full Text PDF

Apoptosis is a very important process of cell death controlled by multiple genes during which cells undergo certain events before dying. Apoptosis helps to clean the unnecessary cells and has critical physiological significance. Altered apoptosis results in a disorder of cell death and is associated with many diseases such as neurodegenerative diseases and cancers.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are essential for the protection of the host from pathogen infections by initiating the integration of contextual cues to regulate inflammation and immunity. However, without tightly controlled immune responses, the host will be subjected to detrimental outcomes. Therefore, it is important to balance the positive and negative regulations of TLRs to eliminate pathogen infection, yet avert harmful immunological consequences.

View Article and Find Full Text PDF

SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-β) production.

View Article and Find Full Text PDF

Background: Extracellular adenosine triphosphate (ATP), a key danger-associated molecular pattern (DAMP) molecule, is released to the extracellular medium during inflammation by injured parenchymal cells, dying leukocytes, and activated platelets. ATP directly activates the plasma membrane channel P2X7 receptor (P2X7R), leading to an intracellular influx of K, a key trigger inducing NLRP3 inflammasome activation. However, the mechanism underlying P2X7R-mediated activation of NLRP3 inflammasome is poorly understood, and additional molecular mediators have not been identified.

View Article and Find Full Text PDF

Aging is a universal feature of life that is a major focus of scientific research and a risk factor in many diseases. A comprehensive understanding of the cellular and molecular mechanisms of aging are critical to the prevention of diseases associated with the aging process. Here, it is shown that MYSM1 is a key suppressor of aging and aging-related pathologies.

View Article and Find Full Text PDF

Enteroviruses infect gastrointestinal epithelium cells, cause multiple human diseases, and present public health risks worldwide. However, the mechanisms underlying host immune responses in intestinal mucosa against the early enterovirus infections remain elusive. Here, we showed that human enteroviruses including enterovirus 71 (EV71), coxsackievirus B3 (CVB3), and poliovirus 1 (PV1) predominantly induce type III interferons (IFN-λ1 and IFN-λ2/3), rather than type I interferons (IFN-α and IFN-β), in cultured human normal and cancerous intestine epithelial cells (IECs), mouse intestine tissues, and human clinical intestine specimens.

View Article and Find Full Text PDF

The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits β1, β2, and β5 are replaced by β1i/LMP2, β2i/MECL-1, and β5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs).

View Article and Find Full Text PDF

The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation.

View Article and Find Full Text PDF