Rev Sci Instrum
September 2024
The inter-satellite laser ranging interferometer is one of the core components of future gravity missions to achieve high ranging precision. This work builds a preliminary breadboard of the off-axis optical bench design, which integrates the merits of the off-axis optical bench design of GRACE Follow-On mission and other on-axis designs. The study finds that the displacement noise between two optical benches has been reduced to 20nm/Hz at a frequency of 10 mHz, and the differential wavefront sensing noise has been suppressed to 10-5rad/Hz at 1 kHz as well.
View Article and Find Full Text PDFThe inter-satellite laser ranging heterodyne interferometer is vital for future gravity missions to achieve high ranging accuracy. This paper proposes a novel off-axis optical bench design which integrates merits of the off-axis optical bench design of GRACE Follow-On mission and other on-axis designs. This design makes use of lens systems subtly to restrict the tilt-to-length coupling noise and takes advantage of the DWS feedback loop to maintain the transmitting beam and receiving beam anti-parallel.
View Article and Find Full Text PDF