Publications by authors named "Kaikai Yi"

Background: Metabolism reprogramming plays a vital role in glioblastoma (GBM) progression and recurrence by producing enough energy for highly proliferating tumor cells. In addition, metabolic reprogramming is crucial for tumor growth and immune-escape mechanisms. Epidermal growth factor receptor (EGFR) amplification and EGFR-vIII mutation are often detected in GBM cells, contributing to the malignant behavior.

View Article and Find Full Text PDF

Background: Temozolomide (TMZ) treatment efficacy in glioblastoma is determined by various mechanisms such as TMZ efflux, autophagy, base excision repair (BER) pathway, and the level of O6-methylguanine-DNA methyltransferase (MGMT). Here, we reported a novel small-molecular inhibitor (SMI) EPIC-1042 (C20H28N6) with the potential to decrease TMZ efflux and promote PARP1 degradation via autolysosomes in the early stage.

Methods: EPIC-1042 was obtained from receptor-based virtual screening.

View Article and Find Full Text PDF

Glioblastoma (GBM) displays a complex metabolic reprogramming in cancer cells. Adenosine triphosphate (ATP) is one of the central mediators of cell metabolism and signaling. GBM cells generate ATP by glycolysis and the tricarboxylic acid (TCA) cycle associated with oxidative phosphorylation (OXPHOS) through the breaking-down of pyruvate or fatty acids to meet the growing energy demand of cancer cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and lethal type of primary malignant central nervous system (CNS) tumor with an extremely poor prognosis, and the mesenchymal subtype of GBM has the worst prognosis. Here, we found that lncRNA PRADX was overexpressed in the mesenchymal GBM and was transcriptionally regulated by RUNX1-CBFβ complex, overexpressed PRADX suppressed BLCAP expression interacting with EZH2 and catalyzing trimethylation of lysine 27 on histone H3 (H3K27me3). Moreover, we showed that BLCAP interacted with STAT3 and reduced STAT3 phosphorylation, overexpressed PRADX activated STAT3 phosphorylation, and promoted ACSL1 expression suppressing BLCAP expression, accelerating tumor metabolism.

View Article and Find Full Text PDF

Exosomes are small extracellular vehicles which could transport genetic materials and proteins between cells. Although there are reports about exosomes crossing the blood-brain barrier (BBB), the underlying mechanisms still need further study. We found that exosomes from primary brain tumors could upregulate the expression of Lipocalin-2 (LCN2) in bEnd.

View Article and Find Full Text PDF

Background: Targeting glioblastoma (GBM) energy metabolism through multiple metabolic pathways has emerged as an effective therapeutic approach. Dual inhibition of phospholipid and mitochondrial metabolism with cytoplasmic phospholipase A2 (cPLA2) knockdown and metformin treatment could be a potential strategy. However, the strategic prerequisite is to explore a carrier capable of co-delivering the therapeutic combination to cross the blood-brain barrier (BBB) and preferentially accumulate at the GBM site.

View Article and Find Full Text PDF

Liposomes have been developed as drug delivery carriers to enhance the antitumor efficiency of therapeutic agents. Lipusu® (Lip), a paclitaxel (PTX) liposome, has been widely used in the treatment of breast cancer. Compared with PTX, Lip could change the biodistribution and reduce the systemic toxicity.

View Article and Find Full Text PDF

Background: Immunotherapy, especially checkpoint inhibitors targeting PD-1 or PD-L1, has revolutionized cancer therapy. However, PD-1/PD-L1 inhibitors have not been investigated thoroughly in glioblastoma (GBM). Studies have shown that polymerase 1 and transcript release factor (PTRF/Cavin-1) has an immune-suppressive function in GBM.

View Article and Find Full Text PDF

Background: Checkpoint blockade therapies targeting programmed death ligand 1 (PD-L1) and its receptor programmed cell death 1 promote T cell-mediated immune surveillance against tumors and have been associated with significant clinical benefit in cancer patients. The long-stranded non-coding RNA HOTAIR is highly expressed and associated with metastasis in a variety of cancer types and promotes tumor metastasis at least in part through association with the PRC2 complex that induces redirection to hundreds of genes involved in tumor metastasis. Here, we report that HOTAIR is an activator lncRNA of the NF-κB pathway and demonstrate that its apparent upregulation promotes inflammatory signaling and immune escape in glioma cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary central nervous system tumor and has a poor prognosis, with a median survival time of only 14 months from diagnosis. Abnormally expressed long noncoding RNAs (lncRNAs) are important epigenetic regulators of chromatin modification and gene expression regulation in tumors, including GBM. We previously showed that the lncRNA HOTAIR is related to the cell cycle progression and can be used as an independent predictor in GBM.

View Article and Find Full Text PDF

Exosomes derived from non-tumor cells hold great potential as drug delivery vehicles because of their good biosafety and natural transference of bioactive cargo between cells. However, compared to tumor-derived exosomes, efficient delivery is limited by their weak interactions with tumor cells. It is essential to engineer exosomes that improve tumor cellular internalization efficiency.

View Article and Find Full Text PDF

Up-to-date knowledge regarding the biogenesis and functioning of microRNAs (miRNAs) has provided a much more comprehensive and concrete view of miRNA biology than anyone ever expected. Diverse genetic origins and biogenesis pathways leading to functional miRNAs converge on the synthesis of ≈21-nucleotide RNA duplex, almost all of which are processed from long premature sequences in a - and/or -dependent manner. Formerly, it was assumed that one mature strand of the duplex is preferentially selected for entry into the silencing complex, and the paired passenger strands (miRNA*) are subjected to degradation.

View Article and Find Full Text PDF

Autophagy of mitochondria, termed mitophagy, plays an important role in cerebral ischemia-reperfusion (IR) injury, but the mechanism is not yet clear. Tissue-type plasminogen activator (tPA) is the most important thrombolytic drug in the clinical treatment of ischemic stroke and has neuroprotective effects. Here, we explored the effects of tPA on neuronal apoptosis and mitophagy following IR.

View Article and Find Full Text PDF

Background: Metabolism remodeling is a hallmark of glioblastoma (GBM) that regulates tumor proliferation and the immune microenvironment. Previous studies have reported that increased polymerase 1 and transcript release factor (PTRF) levels are associated with a worse prognosis in glioma patients. However, the biological role and the molecular mechanism of PTRF in GBM metabolism remain unclear.

View Article and Find Full Text PDF

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system holds great promise for the cancer gene therapy. However, due to complicated signal networks and various compensatory mechanisms in tumors, adjusting a single molecular pathway has limited effects on cancer treatments. Herein, a virus-like nanoparticle (VLN) was reported as a versatile nanoplatform to co-deliver CRISPR/Cas9 system and small molecule drugs for effective malignant cancer treatment.

View Article and Find Full Text PDF

Developing an effective nanoplatform to realize 'multi-in-one' is essential to broaden the therapeutic potential of combination therapy. Exosomes are ideal candidates since their intrinsic abilities of integrating multiple contents and functions. However, only limited efforts have been devoted to engineering exosomes to integrate the needed properties, also considering the safety and yield, for tumor-targeted and efficient gene/chemo combination therapy.

View Article and Find Full Text PDF

Immunosuppression is a key factor leading to a low therapeutic efficiency of the currently used immunotherapies. Monotherapies are unable to overcome immunosuppression because of the complex interplay of immune cells in tumors. Herein, we report a multifunctional nanomodulator (MFNM) as a carrier to deliver different types of immune modulators for comodulating multiple pathways.

View Article and Find Full Text PDF

Background: The EGFR-vIII mutation is the most common malignant event in GBM. Epigenetic reprogramming in EGFR-activated GBM has recently been suggested to downregulate the expression of tumour suppressor genes. Histone acetylation is important for chromatin structure and function.

View Article and Find Full Text PDF

Runt-Related Transcription Factor 1 (RUNX1) is highly expressed in the Mesenchymal (Mes) subtype of glioblastoma (GBM). However, the specific molecular mechanism of RUNX1 in Mes GBM remains largely elusive. In this study, cell and tumor tissue typing were performed by RNA-sequencing.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) enzyme, Cas13a, holds great promise in cancer treatment due to its potential for selective destruction of tumor cells via collateral effects after target recognition. However, these collateral effects do not specifically target tumor cells and may cause safety issues when administered systemically. Herein, a dual-locking nanoparticle (DLNP) that can restrict CRISPR/Cas13a activation to tumor tissues is described.

View Article and Find Full Text PDF

RNA is rarely used as a therapeutic target due to its flexible structure and instability. CRISPR-Cas13a is a powerful tool for RNA knockdown, and the potential application of CRISPR-Cas13a in cancer cells should be further studied. In this study, overexpression of LwCas13a by lentivirus in glioma cells reveals that crRNA-EGFP induces a "collateral effect" after knocking down the target gene in EGFP-expressing cells.

View Article and Find Full Text PDF

Over 20% of cancer 'driver' genes encode chromatin regulators. Long noncoding RNAs (lincRNAs), which are dysregulated in various cancers, play a critical role in chromatin dynamics and gene regulation by interacting with key epigenetic regulators. It has been previously reported that the lincRNA HOTAIR mediates recruitment of polycomb repressive complex 2 (PRC2) leading to aberrant transcriptional silencing of tumor suppressor genes in glioma and breast cancer.

View Article and Find Full Text PDF

Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma.

View Article and Find Full Text PDF

Competitive endogenous RNA (ceRNA) networks play important roles in posttranscriptional regulation. Their dysregulation is common in cancer. However, ceRNA signatures have been poorly examined in the invasive and aggressive phenotypes of mesenchymal glioblastoma (GBM).

View Article and Find Full Text PDF

Exosomes play critical roles in intercellular communication in both nearby and distant cells in individuals and organs. Polymerase I and transcript release factor (PTRF), also known as Cavin1, has previously been described as a critical factor in caveola formation, and aberrant PTRF expression has been reported in various malignancies. However, the function of PTRF in tumor progression remains controversial, and its role in glioma is poorly understood.

View Article and Find Full Text PDF