Trehalose, as a food and feed additive, can regulate physiological and pathological processes by activating autophagy, yet the molecular mechanism of trehalose dominated a rise in autophagy has not been elucidated. This study investigated the mechanisms of trehalose-induced autophagy in porcine granulosa cells (PGCs). Trehalose was internalized into PGCs by endocytosis and caused a temporary change of the lysosome pH, ultimately inducing autophagy.
View Article and Find Full Text PDFBackground: Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated.
View Article and Find Full Text PDFThe pollution caused by oil spills is a global problem, and outbreaks of blue algae in oil-polluted areas are harmful to plankton in the ocean. The ocean is a barren environment limited by low availabilities of nitrogen and other nutrients, and further nitrogen limitation caused by oil contamination is considered one of the important factors leading to outbreaks of cyanobacteria, but the effects of nitrogen amendment in this situation are not well understood. Here, we present the results from nitrogen amendment experiments conducted in oil-contaminated microcosms.
View Article and Find Full Text PDFAnthraquinone dyes, which contain anthraquinone chromophore groups, are the second largest class of dyes after azo dyes and are used extensively in textile industries. The majority of these dyes are resistant to degradation because of their complex and stable structures; consequently, a large number of anthraquinone dyes find their way into the environment causing serious pollution. At present, the microbiological approach to treating printing and dyeing wastewater is considered to be an economical and feasible method, and reports regarding the bacterial degradation of anthraquinone dyes are increasing.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2018
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy to grow. One of the genes in its ndp catabolic cluster, ndpT, encodes a hypothetical transporter. Since no transporter for nicotine has been identified in microorganisms, we investigated whether NdpT is responsible for nicotine transport.
View Article and Find Full Text PDFEnviron Microbiol Rep
August 2018
Cyanobacteria are important primary producers on the surface of oceans and are susceptible to oil spills. However, their tolerance to oil and their roles in the bioremediation of crude oil remain elusive. We analysed the response of microbial communities to a simulated oil spill in estuarine sediment microcosms under a series of oil concentrations (0, 25, 125, and 250 g kg dry wt.
View Article and Find Full Text PDFGraphene oxide has been used as an adsorbent in wastewater treatment. However, the hydrophily and dispersibility in aqueous solution limit its practical application in environmental protection. In this paper, a novel, environmentally friendly adsorbent, chitosan and chitosan-graphene oxide aerogels with a diverse shape, large specific surface area, and unique porous structure were prepared by a freeze-drying method.
View Article and Find Full Text PDFChitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated.
View Article and Find Full Text PDF