The introduction of cantilever-based fiber-optic microphones (FOMs) has proven to be effective in acoustic sensing. Further improvements in cantilevers face two key constraints: the challenge of achieving minimal sizes with sufficient reflective area and the trade-off between sensitivity and response bandwidth. Herein, we present a geometry optimization framework for a cantilever-based FOM that addresses this issue.
View Article and Find Full Text PDFAn acoustic imaging method for detecting and locating gas leaks based on a virtual ultrasonic sensor array is proposed and experimentally demonstrated. A scanning sensor array of only two sensors is used to collect the acoustic signals generated by the leakage hole. The matrix of the leakage signal is processed by the cross-power spectrum method to achieve time consistency, afterward, the location of the leakage source can be calculated by the virtual beamforming method.
View Article and Find Full Text PDFPlasmon induced transparency (PIT), known as the coupling of plasmon modes in metamaterials, has attracted intensive research interests in photonic applications. In this work, a PIT-like transparency is realized via the strong coupling of plasmonic dipole and epsilon-near-zero (ENZ) mode. Two types of metasurfaces, namely the gold nanoantenna and dolmen-like metasurface, are designed with an integrated ENZ material aluminum doped zinc oxide (AZO) film.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAxial line-focused spiral zone plates were developed for operation at optical wavelengths. The design, fabrication, and diffraction properties of the proposed element are presented. Numerical results showed that hollow beams could be generated, and that the element can be employed for a multi-wavelength operation.
View Article and Find Full Text PDFWe theoretically investigate the optical properties of a nanostructure consisting of the two identical and symmetrically arranged crisscrosses. A plasmonic Fano resonance is induced by a strong interplay between bright mode and dark modes, where the bright mode is due to electric dipole resonance while dark modes originate from the magnetic dipole induced by LC resonances. In this article, we find that the electric field "hotspots" corresponding to three different wavelengths can be positioned at the same spatial position, and its spectral tunability is achieved by changing geometric parameters.
View Article and Find Full Text PDFThe development of new substrates for surface-enhanced spectroscopy is primarily motivated by the ability to design such substrates to provide the maximum signal enhancement. In this paper, we theoretically design and investigate a crisscross dimer array as a plasmonic substrate for enhancing coherent anti-Stokes Raman scattering (CARS). The plasmonic film-crisscross dimer array system can excite multiple resonances at optical frequencies.
View Article and Find Full Text PDFTerahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation.
View Article and Find Full Text PDFWe report intense (~10 mW), ultra-broadband (~150 THz wide), terahertz-to-infrared, Gaussian-wavefront emission from nanopore-structured metallic thin films under femtosecond laser pulse irradiation. The proposed underlying mechanism is thermal radiation. The nanostructures of the metal film are produced by random holes in the substrate.
View Article and Find Full Text PDFWe present a theoretical and experimental investigation of the THz pulse phase measured by a broadband heterodyne detection method via field-induced second-harmonic generation in ambient air. The dependence of the detected THz phase spectra on the positions of the wire shaped electrodes scanning along the detection plasma is discussed. An additional phase shift around the beam focus is observed.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.