Immunoglobulin A nephropathy (IgAN) is the most prevalent glomerulonephritis in the world, and it is one of the leading causes of end-stage kidney disease. It is now believed that the pathogenesis of IgAN is the mesangial deposition of immune complex containing galactose-deficient IgA1, resulting in glomerular injury. Current treatments for IgAN include supportive care and immunosuppressive therapy.
View Article and Find Full Text PDFBackground: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis, often resulting in functional deterioration and withdrawal from therapy. Mesenchymal stem cells (MSCs) have demonstrated immunomodulatory and antifibrotic effects in various models. This meta-analysis evaluated the efficacy of MSCs therapy in animal models of peritoneal fibrosis.
View Article and Find Full Text PDFPeritoneal dialysis is an important part of end-stage kidney disease replacement therapy. However, prolonged peritoneal dialysis can result in peritoneal fibrosis and ultrafiltration failure, forcing patients to withdraw from peritoneal dialysis treatment. Therefore, there is an urgent need for some effective measures to alleviate the occurrence and progression of peritoneal fibrosis.
View Article and Find Full Text PDFIntroduction And Aim: Immunoglobulin A nephropathy (IgAN), characterized by aberrant IgA immune complex deposition, is the most prevalent primary glomerular disease and the main cause of end-stage renal disease, causing a significant physical and psychological burden on people worldwide. Conventional therapeutic approaches, such as renin-angiotensin-aldosterone system inhibitors and corticosteroids, may not achieve sufficient effectiveness and may produce major side events in the past. The previous data in Asian populations indicated that mycophenolate mofetil (MMF) might significantly advance the development of a new therapy strategy for IgAN.
View Article and Find Full Text PDFChronic kidney disease (CKD) refers to the presence of structural or functional abnormalities in the kidneys that affect health, lasting for more than 3 months. CKD is not only the direct cause of global incidence rate and mortality, but also an important risk factor for cardiovascular disease. Persistent microinflammatory state has been recognized as an important component of CKD, which can lead to renal fibrosis and loss of renal function, and plays a crucial role in the pathophysiology and progression of the disease.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2023
Background: Sodium-glucose co-transporter 2 (SGLT2) inhibitors provide cardiovascular protection for patients with heart failure (HF) and type 2 diabetes mellitus (T2DM). However, there is little evidence of their application in patients with chronic kidney disease (CKD). Furthermore, there are inconsistent results from studies on their uses.
View Article and Find Full Text PDFIntroduction: Chronic kidney disease (CKD) has a clinical characteristic of progressive loss of kidney function and becomes a serious health and social concern. SGLT2i (sodium-glucose cotransporter 2 inhibitors), a class of anti-diabetic medications, are shown to reduce cardiovascular and renal events. This systematic review and meta-analysis aimed to assess whether SGLT2i could become a new treatment strategy for CKD for its renal protection and safety.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE.
View Article and Find Full Text PDF