Publications by authors named "Kaijie Zheng"

In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance.

View Article and Find Full Text PDF

Processing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming. Here, we used in-gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on yellow-green variegation in soybean leaves, a trait that increases value in ornamental plants but reduces crop yields.
  • Researchers identified four mutants (Gmvar1 to Gmvar4) and found that a gene called GmCS1, which encodes a chorismate synthase, is responsible for this phenotype.
  • Supplying specific aromatic amino acids like Phenylalanine to the mutants can reverse the variegation, highlighting changes in metabolic processes and gene regulation in these plants.
View Article and Find Full Text PDF

The alga is a potential platform for recombinant protein expression in the future due to various advantages. Dozens of strains producing genetically engineered recombinant therapeutic protein have been reported. However, owing to extremely low protein expression efficiency, none have been applied for industrial purposes.

View Article and Find Full Text PDF

The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1's functions in Arabidopsis.

View Article and Find Full Text PDF

Background: Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized.

Results: Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins.

View Article and Find Full Text PDF

Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases.

View Article and Find Full Text PDF

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.

View Article and Find Full Text PDF

Abscisic acid (ABA) is the key hormone that regulating plant responses to abiotic stresses. Several basic helix-loop-helix (bHLH) transcription factors have been reported to regulate ABA signaling in Arabidopsis. Paclobutrazol Resistances (PREs) are non-DNA binding bHLH transcription factors involved in the regulation of plant response to several different plant hormones including gibberellin, brassinosteroid and auxin.

View Article and Find Full Text PDF

3-O-caffeoylquinic acid, also known as chlorogenic acid (CGA), functions as an intermediate in lignin biosynthesis in the phenylpropanoid pathway. It is widely distributed among numerous plant species and acts as an antioxidant in both plants and animals. Using GC-MS, we discovered consistent and extreme variation in CGA content across a population of 739 4-yr-old Populus trichocarpa accessions.

View Article and Find Full Text PDF

Background: Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex.

View Article and Find Full Text PDF

Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription factors that have been shown to be involved in gibberellin and brassinosteroid signaling, and light responses in Arabidopsis.

View Article and Find Full Text PDF

The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling.

View Article and Find Full Text PDF

CRISPR-Cas adaptive immune systems defend microbes against foreign nucleic acids via RNA-guided endonucleases. Using a computational sequence database mining approach, we identify two class 2 CRISPR-Cas systems (subtype VI-B) that lack Cas1 and Cas2 and encompass a single large effector protein, Cas13b, along with one of two previously uncharacterized associated proteins, Csx27 and Csx28. We establish that these CRISPR-Cas systems can achieve RNA interference when heterologously expressed.

View Article and Find Full Text PDF

The noncoding genome affects gene regulation and disease, yet we lack tools for rapid identification and manipulation of noncoding elements. We developed a CRISPR screen using ~18,000 single guide RNAs targeting >700 kilobases surrounding the genes NF1, NF2, and CUL3, which are involved in BRAF inhibitor resistance in melanoma. We find that noncoding locations that modulate drug resistance also harbor predictive hallmarks of noncoding function.

View Article and Find Full Text PDF

Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14).

View Article and Find Full Text PDF

In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex.

View Article and Find Full Text PDF

Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling.

View Article and Find Full Text PDF

In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots.

View Article and Find Full Text PDF

Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown.

View Article and Find Full Text PDF

Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs).

View Article and Find Full Text PDF

In Arabidopsis, trichome formation is regulated by the interplay of R3 MYBs and several others transcription factors including the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1), the R2R3 MYB transcription factor GLABRA1 (GL1), the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3), and the homeodomain protein GLABRA2 (GL2). R3 MYBs including TRICHOMELESS1 (TCL1), TCL2, TRYPTICHON (TRY), CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1), ETC2 and ETC3 negatively regulate trichome formation by competing with GL1 for binding GL3 or EGL3, thus blocking the formation of TTG1-GL3/EGL3-GL1, an activator complex required for the activation of the trichome positive regulator gene GL2. However, it is largely unknown if R3 MYBs in other plant species especially woody plants have similar functions.

View Article and Find Full Text PDF