We used a coarse-grained (CG) molecular dynamics model with potentials convertible to actual units to simulate the polymerization of a gel of a tetra-armed poly(ethylene glycol) derivative (MW ≈ 6000) under aqueous conditions and analysed its three-dimensional network structure. The radius of gyration of individual pre-polymers after gelation was slightly increased compared with that of the single pre-polymer before gelation, and its distribution was broad, attributable to inter- and intra-molecular bonds. The largest pores in the unit cell were about 3.
View Article and Find Full Text PDFPositively charged photodegradable nanoparticles that simultaneously encapsulated various compounds including small and large molecules were prepared. The nanoparticles were internalized to the cell by endocytosis and were stable within the cells for at least 4 days. The encapsulated molecules were released into the cytosol using light stimuli.
View Article and Find Full Text PDFPreviously, we developed the "protein activation and release from cage by external light" (PARCEL) method for controlling the function of proteins by encapsulating them in a photodegradable hydrogel and subsequently releasing them by ultraviolet (UV) irradiation of the gel. However, controlling small proteins is difficult because small proteins can leak from the gap (ca. 12.
View Article and Find Full Text PDF