Background: Temozolomide (TMZ) is used in the treatment of glioblastoma (GBM). However, the primary obstacle remains the emergence of TMZ chemotherapy resistance. NONO and SFPQ are multifunctional nuclear proteins involved in genome stability and gene regulation.
View Article and Find Full Text PDFTemozolomide (TMZ) resistance is one of the major reasons for poor prognosis in patients with glioblastoma (GBM). Long noncoding RNAs (lncRNAs) are involved in multiple biological processes, including TMZ resistance. Linc00942 is a potential regulator of TMZ sensitivity in GBM cells is shown previously.
View Article and Find Full Text PDFIn patients with glioblastoma (GBM), upregulated midkine (MDK) limits the survival benefits conferred by temozolomide (TMZ). RNA interference (RNAi) and CRISPR-Cas9 gene editing technology are attractive approaches for regulating MDK expression. However, delivering these biologics to GBM tissue is challenging.
View Article and Find Full Text PDFGliomas are the most prevalent and aggressive brain tumors, exhibiting high proliferation, abnormal glycolysis, and poor prognosis. LncRNAs act as regulatory molecules and play crucial roles in the malignant behaviors of GBM cells, including cell self-renewal. However, the regulatory mechanisms involved are largely unknown.
View Article and Find Full Text PDFBackground: N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A) are the main RNA methylation modifications involved in the progression of cancer. However, it is still unclear whether RNA methylation-related long noncoding RNAs (lncRNAs) affect the prognosis of glioma.
Methods: We summarized 32 m6A/m5C/m1A-related genes and downloaded RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) database.
Glioblastoma (GBM), the most common malignant primary brain cancer in adults, nearly always becomes resistant to current treatments, including the chemotherapeutic temozolomide (TMZ). The long noncoding RNA (lncRNA) TMZ-associated lncRNA in GBM recurrence () promotes GBM resistance to TMZ. Exosomes can release biochemical cargo into the tumor microenvironment (TME) or transfer their contents, including lncRNAs, to other cells as a form of intercellular communication.
View Article and Find Full Text PDF