Publications by authors named "Kaidi Ren"

Esophageal cancer is a major malignancy with a high incidence and poor prognosis. To elucidate the mechanisms underlying its progression, particularly with respect to cell division and spindle orientation, we investigated the role of m6A modifications and the centrosomal protein CEP170. Using m6A-seq and RNA-seq of esophageal cancer tissues and adjacent normal tissues, we identified significant alterations in m6A modifications and gene expression, highlighting the upregulation and m6A enrichment of CEP170 in tumor tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and ALS are increasingly associated with issues in mitochondria and inflammation of the nervous system.
  • Mitochondrial damage causes the release of molecules (mtDAMPs) such as mitochondrial DNA and reactive oxygen species, which trigger inflammatory responses that worsen these diseases.
  • The review highlights how understanding mtDAMPs can lead to new treatments aimed at reducing neuroinflammation and slowing down disease progression, potentially leading to better outcomes for patients.
View Article and Find Full Text PDF

Aging is an intricate process involving interactions among multiple factors, which is one of the main risks for chronic diseases, including Alzheimer's disease (AD). As a member of cysteine protease, cathepsin S (CTSS) has been implicated in inflammation across various diseases. Here, we investigated the role of neuronal CTSS in aging and AD started by examining CTSS expression in hippocampus neurons of aging mice and identified a significant increase, which was negatively correlated with recognition abilities.

View Article and Find Full Text PDF

Heart failure (HF) is a leading cause of morbidity and mortality worldwide, necessitating the discovery of new therapeutic targets. NPLOC4 is known as an endoplasmic reticulum protein involved in protein degradation and cellular stress responses. Herein, NPLOC4 was investigated for its role in HF using a transverse aortic constriction (TAC) mouse model and an Angiotensin II (Ang II)-induced H9c2 cardiomyocyte model.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) represent a significant public health concern because of their associations with inflammation, oxidative stress, and abnormal remodeling of the heart and blood vessels. In this review, we discuss the intricate interplay between mitochondria-associated membranes (MAMs) and cardiovascular inflammation, highlighting their role in key cellular processes such as calcium homeostasis, lipid metabolism, oxidative stress management, and ERS. We explored how these functions impact the pathogenesis and progression of various CVDs, including myocardial ischemia-reperfusion injury, atherosclerosis, diabetic cardiomyopathy, cardiovascular aging, heart failure, and pulmonary hypertension.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an intricate neurodegenerative disorder characterized by the accumulation of misfolded proteins, including beta-amyloid (Aβ) and tau, leading to cognitive decline. Despite decades of research, the precise mechanisms underlying its onset and progression remain elusive. Cathepsins are a family of lysosomal enzymes that play vital roles in cellular processes, including protein degradation and regulation of immune responses.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM.

View Article and Find Full Text PDF

Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals.

View Article and Find Full Text PDF

Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) have been recognized as the leading cause of premature mortality and morbidity worldwide despite significant advances in therapeutics. Inflammation is a key factor in CVD progression. Once stress stimulates cells, they release cellular compartments known as damage-associated molecular patterns (DAMPs).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI.

View Article and Find Full Text PDF

According to published archaeological sources, zooarchaeological data collection on the Qinghai-Tibet Plateau and its marginal and transitional areas is inadequate, and relevant datasets have not been published. For this reason, we collected and collated relevant information. Our database provides the geographical location, elevation, cultural type and faunal assemblage of each site on the Qinghai-Tibet Plateau and its periphery for which zooarchaeological data have been published from the Paleolithic to the Early Iron Age.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs.

View Article and Find Full Text PDF
Article Synopsis
  • * Cell injuries in the infarct region can follow either regulated pathways (like apoptosis and autophagy) or nonregulated pathways, with recent research highlighting a controllable form of necrosis called regulated necrosis.
  • * This review looks into the molecular mechanisms behind various types of regulated necrosis in ischemic stroke and suggests that targeting these pathways could improve neuron survival and recovery.
View Article and Find Full Text PDF

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a global health issue that presents a complex pathogenesis and limited treatment options. To provide guidance for precise therapies, it is crucial to accurately identify the pathogenesis of DKD. Several studies have recognized that mitochondrial and endoplasmic reticulum (ER) dysfunction are key drivers of the pathogenesis of DKD.

View Article and Find Full Text PDF

Copper (Cu) is a vital trace element for maintaining human health. Current evidence suggests that genes responsible for regulating copper influx and detoxification help preserve its homeostasis. Adequate Cu levels sustain normal cardiac and blood vessel activity by maintaining mitochondrial function.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed.

View Article and Find Full Text PDF

Globally, 265,713,467 confirmed cases of SARS-CoV-2 (CoV-2), including 5,260,888 deaths, have been reported by the WHO. It is important to study the mechanism of this infectious disease. A variety of evidences show the potential association between CoV-2 and glucose metabolism.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels.

View Article and Find Full Text PDF

Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death.

View Article and Find Full Text PDF

Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels.

View Article and Find Full Text PDF

Traumatic brain injury (TBI), a kind of external trauma-induced brain function alteration, has posed a financial burden on the public health system. TBI pathogenesis involves a complicated set of events, including primary and secondary injuries that can cause mitochondrial damage. Mitophagy, a process in which defective mitochondria are specifically degraded, segregates and degrades defective mitochondria allowing a healthier mitochondrial network.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session83fidhangc77bv1orn7qrlr69qmn003n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once