During nervous system development, axons often undergo elaborate changes in branching patterns before circuits have achieved their mature patterns of innervation. In the auditory system, type I spiral ganglion neurons (SGNs) project their peripheral axons into the cochlear epithelium and then undergo a process of branch refinement before forming synapses with sensory hair cells. Here, we report that Semaphorin-5B (Sema5B) acts as an important mediator of this process.
View Article and Find Full Text PDFIn hearing, mechanically sensitive hair cells (HCs) in the cochlea release glutamate onto spiral ganglion neurons (SGNs) to relay auditory information to the central nervous system (CNS). There are two main SGN subtypes, which differ in morphology, number, synaptic targets, innervation patterns and firing properties. About 90-95% of SGNs are the type I SGNs, which make a single bouton connection with inner hair cells (IHCs) and have been well described in the canonical auditory pathway for sound detection.
View Article and Find Full Text PDFAuditory function is dependent on the formation of specific innervation patterns between mechanosensory hair cells (HCs) and afferent spiral ganglion neurons (SGNs). In particular, type I SGNs must precisely connect with inner HCs (IHCs) while avoiding connections with nearby outer HCs (OHCs). The factors that mediate these patterning events are largely unknown.
View Article and Find Full Text PDFThe miR-183 family consists of 3 related microRNAs (miR-183, miR-96, miR-182) that are required to complete maturation of primary sensory cells in the mammalian inner ear. Because the level of these microRNAs is not uniform across hair cell subtypes in the murine cochlea, the question arises as to whether hair cell phenotypes are influenced by microRNA expression levels. To address this, we used the chicken embryo to study expression and misexpression of this gene family.
View Article and Find Full Text PDFSensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development.
View Article and Find Full Text PDF