Photolytic generation of nitric oxide (NO), isoprene, and reactive oxygen species (ROS) pre-dated life on Earth (~4 billion years ago). However, isoprene-ROS-NO interactions became relevant to climate chemistry ~50 million years ago, after aquatic and terrestrial ecosystems became dominated by isoprene-emitting diatoms and angiosperms. Today, NO and NO2 (together referred to as NOx) are dangerous biogenic gaseous atmospheric pollutants.
View Article and Find Full Text PDFSome canonical plant hormones such as auxins and gibberellins have precursors that are biogenic volatiles (indole, indole acetonitrile, phenylacetaldoxime and ent-kaurene). Cytokinins, abscisic acid and strigolactones are hormones comprising chemical moieties that have distinct volatile analogues, and are synthesised alongside constitutively emitted volatiles (isoprene, sesquiterpenes, lactones, benzenoids and apocarotenoid volatiles). Nonvolatile hormone analogues and biogenic volatile organic compounds (BVOCs) evolved in tandem as growth and behavioural regulators in unicellular organisms.
View Article and Find Full Text PDFIsoprene, a major biogenic volatile hydrocarbon of climate-relevance, indisputably mitigates abiotic stresses in emitting plants. However functional relevance of constitutive isoprene emission in unstressed plants remains contested. Isoprene and cytokinins (CKs) are synthesized from a common substrate and pathway in chloroplasts.
View Article and Find Full Text PDFDimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants.
View Article and Find Full Text PDFPlants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power.
View Article and Find Full Text PDF