Publications by authors named "Kaichiro Endo"

Phosphatidylglycerol (PG) in thylakoid membrane is essential for growth and photosynthesis of photosynthetic organisms. Although the sn-2 position of PG in thylakoid membrane is exclusively esterified with C fatty acids, the functional importance of the C fatty-acyl chains at the sn-2 position has not been clarified. In this study, we chemically synthesized non-metabolizable PG molecules: we introduced linoleic acid (18:2, fatty acid containing 18 carbons with 2 double bonds) and one of the saturated fatty acids with different chain length (12:0, 14:0, 16:0, 18:0 and 20:0) by ether linkage to the sn-1 and sn-2 positions, respectively.

View Article and Find Full Text PDF

Membrane lipid remodeling in plants and microalgae has a crucial role in their survival under nutrient-deficient conditions. Aquatic microalgae have low access to CO , an essential carbon source for photosynthetic assimilates; however, 70-90 mol% of their membrane lipids are sugar-derived lipids (glycolipids) such as monogalactosyldiacylglycerol (MGDG). In this study, we discovered a new system of membrane lipid remodeling responding to CO in Synechocystis sp.

View Article and Find Full Text PDF

Sulfoquinovosyl-diacylglycerol (SQDG) is one of the four lipids present in the thylakoid membranes. Depletion of SQDG causes different degrees of effects on photosynthetic growth and activities in different organisms. Four SQDG molecules bind to each monomer of photosystem II (PSII), but their role in PSII function has not been characterized in detail, and no PSII structure without SQDG has been reported.

View Article and Find Full Text PDF

X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the Q-binding site.

View Article and Find Full Text PDF
Article Synopsis
  • Analysis of Cyanothece sp. PCC 8801 shows it has high levels of myristic acid (14:0) and linoleic acid in its glycerolipids, with 14:0 making up about 50% of total fatty acids.
  • Unlike most cyanobacteria, which usually have C16 fatty acids at the sn-2 position of glycerolipids, Cyanothece sp. PCC 8801 primarily esterifies 14:0 to this position.
  • Genetic transformation of Synechocystis sp. PCC 6803 with the PCC8801_1274 gene increased the 14:0 content significantly, suggesting the acyltransferase from Cyanothece sp.
View Article and Find Full Text PDF

The thylakoid membrane is the site of photochemical and electron transport reactions of oxygenic photosynthesis. The lipid composition of the thylakoid membrane, with two galactolipids, one sulfolipid, and one phospholipid, is highly conserved among oxygenic photosynthetic organisms. Besides providing a lipid bilayer matrix, thylakoid lipids are integrated in photosynthetic complexes particularly in photosystems I and II and play important roles in electron transport processes.

View Article and Find Full Text PDF

Anionic lipids, sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), are major classes of the thylakoid membrane lipids in cyanobacteria and plant chloroplasts. PG is essential for growth and photosynthesis of cyanobacteria, algae and plants, but the requirement for SQDG differs even among cyanobacterial species. Although SQDG and PG can compensate each other in part presumably to maintain proper balance of anionic charge in lipid bilayers, the functional relationship of these lipids is largely unknown.

View Article and Find Full Text PDF

Phosphatidylglycerol (PG) is the only major phospholipid in the thylakoid membrane in cyanobacteria and plant chloroplasts. Although PG accounts only for ~10% of total thylakoid lipids, it plays indispensable roles in oxygenic photosynthesis. In contrast to the comprehensive analyses of PG-deprived mutants in cyanobacteria, in vivo roles of PG in photosynthesis during plant growth remain elusive.

View Article and Find Full Text PDF

Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol.

View Article and Find Full Text PDF

Phosphatidylglycerol (PG) is an indispensable phospholipid class with photosynthetic function in plants and cyanobacteria. However, its biosynthesis in eukaryotic green microalgae is poorly studied. Here, we report the isolation and characterization of two homologs (CrPGP1 and CrPGP2) of phosphatidylglycerophosphate synthase (PGPS), the rate-limiting enzyme in PG biosynthesis, in Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Recent X-ray crystallographic analysis of photosystem (PS) II at 1.9-Å resolution identified 20 lipid molecules in the complex, five of which are phosphatidylglycerol (PG). In this study, we mutagenized amino acid residues S232 and N234 of D1, which interact with two of the PG molecules (PG664 and PG694), by site-directed mutagenesis in Synechocystis sp.

View Article and Find Full Text PDF

Acaryochloris marina is a unique cyanobacterium that contains chlorophyll (Chl) d as a major pigment. Because Chl d has smaller excitation energy than Chl a used in ordinary photosynthetic organisms, the energetics of the photosystems of A. marina have been the subject of interest.

View Article and Find Full Text PDF